

Baccalauréat 2014 - S Pondichéry

Série S Obligatoire Mardi 8 Avril 2014 Correction

Pour les candidats n'ayant pas suivi l'enseignement de spécialité maths

Like Math93 on Facebook / Follow Math93 on Twitter

Exercice 1. Loi de probabilité

4 points

Commun à tous les candidats

Tout sera arrondi au centième.

1. La durée de vie, exprimée en années, d'un moteur pour automatiser un portail fabriqué par une entreprise A est une variable aléatoire X qui suit une loi exponentielle de paramètre λ , où λ est un réel strictement positif. On sait que $P(X \le 2) = 0, 15$.

Déterminons la valeur exacte du réel λ .

Puisque X suit une loi exponentielle de paramètre λ , pour tout réel b on a :

$$P(X \leq b) = 1 - e^{-\lambda b}$$

soit pour b=2

$$P(X \le 2) = 1 - e^{-2\lambda}$$

or $P(X \leq 2) = 0, 15$ donc

$$0, 15 = 1 - e^{-2\lambda}$$

 $e^{-2\lambda} = 0.85$

soit

$$-2\lambda = \ln 0.85$$

On en déduite que

$$\lambda = -\frac{\ln 0, 85}{2} \approx 0,081$$

- 2. Dans la suite de l'exercice on prendra 0, 081 pour valeur de λ .
 - 2. a. Déterminer $P(X \ge 3)$.

Puisque X suit une loi exponentielle de paramètre λ , pour tout réel b on a :

$$P(X \ge a) = e^{-\lambda a}$$

soit pour a=3 et $\lambda=0,081$

$$P(X \ge 3) = e^{-3 \times 0.081}$$

On en déduite que

$$P(X \ge 3) \approx 0.78$$

2. b. Montrons que pour tous réels positifs t et h, $P_{X\geqslant t}(X\geqslant t+h)=P(X\geqslant h)$.

Soit A l'évènement « $X \ge t + h$ » et B l'évènement « $X \ge t$ ». On a de façon évidente

$$A \subset B$$
 et donc $A \cap B = A$

De ce fait pour tous réels positifs t et h:

$$P_{x\geqslant t}(X\geqslant t+h) = P_B(A)$$

$$= \frac{P(A\cap B)}{P(B)}$$

$$= \frac{P(A)}{P(B)}$$

$$= \frac{P(X\geqslant t+h)}{P(X\geqslant t)}$$

$$= \frac{e^{-\lambda(t+h)}}{e^{-\lambda t}}$$

$$= \frac{e^{-\lambda t} \times e^{-\lambda h}}{e^{-\lambda t}}$$

$$= e^{-\lambda h}$$

$$= P(X \ge h)$$

soit

$$P_{X \geqslant t}(X \geqslant t + h) = P(X \geqslant h)$$

2. c. Le moteur a déjà fonctionné durant 3 ans. Quelle est la probabilité pour qu'il fonctionne encore 2 ans ?

En notant B l'évènement « Le moteur a déjà fonctionné durant 3 ans » et A l'évènement « Le moteur fonctionne durant 2 ans de plus » on a $B = (X \ge 3)$ et $A = (X \ge 3 + 2)$. De ce fait, la probabilité cherchée correspond à :

$$P_B(A) = P_{X \geqslant 3}(X \geqslant 3+2)$$

d'après la question 2b on obtient alors

$$P_B(A) = P(X \ge 2)$$
$$= e^{-2 \times 0.081}$$
$$P_B(A) \approx 0.85$$

Le moteur ayant fonctionné durant 3 ans, la probabilité pour qu'il fonctionne encore 2 ans est donc de 0,85 (arrondie au centième).

2. d. L'espérance de la variable aléatoire X est

$$E(X) = \frac{1}{\lambda} = \frac{1}{0,081} \approx 12,35$$

ce qui donne la durée de vie moyenne, en année, d'un moteur fabriqué par l'entreprise A.

3. Dans la suite de cet exercice, on donnera des valeurs arrondies des résultats à 10^{-3}

- L'entreprise A annonce que le pourcentage de moteurs défectueux dans la production est égal à p = 1%.
- Afin de vérifier cette affirmation n=800 moteurs sont prélevés au hasard.
- On constate que 15 moteurs sont détectés défectueux donc la fréquence observée est $f=\frac{15}{800}=0,01875=1,875\%$.

On va regarder si la fréquence observée appartient à l'intervalle de fluctuation asymptotique. Si c'est le cas, on considérera que l'entreprise a raison au seuil de 95%

Théorème 1 (Intervalle de fluctuation asymptotique)

Si les conditions suivantes sont remplies :
$$\begin{cases} \checkmark & n \geq 30 \\ \checkmark & np \geq 5 \\ \checkmark & n(1-p) \geq 5 \end{cases}$$

Alors un intervalle de fluctuation asymptotique au seuil de confiance de 95% de la fréquence F_n d'un caractère dans un échantillon de taille n est :

$$I_n = \left[p - 1,96 \frac{\sqrt{p(1-p)}}{\sqrt{n}} ; p + 1,96 \frac{\sqrt{p(1-p)}}{\sqrt{n}} \right]$$

où p désigne la proportion de ce caractère dans la population.

On a n=800, p=1% alors on sait que puisque :

$$\begin{cases} \checkmark & n = 800 \ge 30 \\ \checkmark & np = 800 \times 1\% = 8 \ge 5 \\ \checkmark & n(1-p) = 800 \times 99\% = 792 \ge 5 \end{cases}$$

Les conditions de validité sont réunies donc l'intervalle de fluctuation asymptotique au seuil 95% pour la fréquence F_{800} est :

$$I_{800} = \left[p - 1,96\frac{\sqrt{p(1-p)}}{\sqrt{n}}; p + 1,96\frac{\sqrt{p(1-p)}}{\sqrt{n}}\right] = \left[0,01 - 1,96\frac{\sqrt{0,01 \times 0,99}}{\sqrt{800}}; 0,01 + 1,96\frac{\sqrt{0,01 \times 0,99}}{\sqrt{800}}\right]$$

soit

$$I \approx [0, 3\% \; ; \; 1, 7\%]$$

La fréquence observée n'appartient pas à l'intervalle de fluctuation $f = 1,875\% \notin I_{800}$, donc on rejette l'hypothèse. **L'annonce de l'entreprise est rejetée au seuil de 95**%.

On applique en fait la propriété suivante :

Propriété 1

On considère une population dans laquelle on suppose que la proportion d'un caractère est p. On observe f comme fréquence de ce caractère dans un échantillon de taille n. Si I_n est l'intervalle de fluctuation de la fréquence à 95% dans les échantillons de tailles n, alors la **règle de décision** est la suivante :

- $\mathbf{si}\ f \in I_n$: on considère que l'hypothèse selon laquelle la proportion est p dans la population n'est pas remise en cause et on l'**accepte**;
- si $f \notin I_n$: on rejette l'hypothèse selon laquelle cette proportion vaut p.

Exercice 2. Vrai ou Faux

4 points

Commun à tous les candidats

1. Proposition 1 : La proposition est fausse

Proposition 1 (Faux)

Toute suite positive croissante tend vers $+\infty$.

Il suffit d'exhiber un contre exemple. Par exemple la suite (u_n) définie pour tout entier n non nul par :

$$u_n = 1 - \frac{1}{n}$$

• Cette suite est clairement **positive** puisque

$$\forall n \in \mathbb{N}^* \; ; \; \frac{1}{n} \le 1$$

• De plus est est **croissante** puisque pour tout entier n non nul :

$$u_{n+1} - u_n = 1 - \frac{1}{n+1} - \left(1 - \frac{1}{n}\right)$$
$$= \frac{1}{n} - \frac{1}{n+1}$$
$$= \frac{1}{n(n+1)} > 0$$

- Or cette suite tend vers 1 ce qui contredit la proposition 1.
- **2.** g est la fonction définie sur]-0,5; $+\infty[$ par $g(x)=2x\ln(2x+1)$.

Proposition 2 (Faux)

Sur $\left]-\frac{1}{2}\,;\,+\infty\right[$, l'équation g(x)=2x a une unique solution : $\frac{\mathrm{e}-1}{2}$.

Pour tout réel x de l'intervalle]-0,5; $+\infty[$

$$g(x) = 2x \Longleftrightarrow 2x \ln(2x+1) = 2x$$
$$\iff 2x \ln(2x+1) - 2x = 0$$
$$\iff 2x \left(\ln(2x+1) - 1\right) = 0$$

Or cette équation admet aussi $x=0\in]-0,5$; $+\infty[$ comme solution évidente ce qui contredit la proposition 2.

Proposition 3 (Vraie)

Le coefficient directeur de la tangente à la courbe représentative de la fonction g au point d'abscisse $\frac{1}{2}$ est : $1 + \ln 4$.

Le coefficient directeur de la tangente à la courbe représentative de la fonction g au point d'abscisse $\frac{1}{2}$ est donné par g'(0,5). La fonction g est dérivable sur]-0,5; $+\infty[$. On a en appliquant la formule de dérivation d'un produit :

$$\forall x \in]-0,5; +\infty[; g'(x) = (2x)' \ln(2x+1) + 2x \left(\ln(2x+1)\right)'$$
$$g'(x) = 2\ln(2x+1) + 2x \times \frac{2}{2x+1}$$

on a pour x=0,5

$$g'(0,5) = 2\ln 2 + 1$$

soit

$$g'(0,5) = \ln 4 + 1$$

3. Proposition 4

Proposition 4 (Vraie)

L'espace est muni d'un repère orthonormé $\left(0,\stackrel{\rightarrow}{\imath},\stackrel{\rightarrow}{\jmath},\stackrel{\rightarrow}{k}\right)$. \mathscr{P} et \mathscr{R} sont les plans d'équations respectives : 2x+3y-z-11=0 et x+y+5z-11=0. Les plans \mathscr{P} et \mathscr{R} se coupent perpendiculairement.

- Les vecteurs normaux respectivement aux plans \mathscr{P} et \mathscr{R} sont : $\begin{bmatrix} \longrightarrow \\ n_{\mathscr{P}} & \begin{pmatrix} 2\\3\\-1 \end{pmatrix} \; ; \; \stackrel{\longrightarrow}{n_{\mathscr{R}}} & \begin{pmatrix} 1\\1\\5 \end{pmatrix} \; ;$
- Les vecteurs normaux des deux plans sont orthogonaux puisque

$$\overrightarrow{n_{\mathscr{P}}} \cdot \overrightarrow{n_{\mathscr{R}}} = 2 + 3 - 5 = 0$$

donc les plans \mathscr{P} et \mathscr{R} sont perpendiculaires.

Exercice 3. Candidats n'ayant pas suivi la spécialité

5 points

1. Forme exponentielle de $z_1=rac{3}{4}+rac{\sqrt{3}}{4}$ i .

• Module:
$$\left| \frac{3}{4} + \frac{\sqrt{3}}{4} i \right| = \sqrt{\frac{9}{16} + \frac{3}{16}} = \frac{12}{4} = \frac{\sqrt{3}}{2}$$

• Argument: Si on note
$$\theta_1$$
 un argument de z_1 on a,
$$\begin{cases} \cos \theta_1 &= \frac{3}{4} \times \frac{2}{\sqrt{3}} = \frac{\sqrt{3}}{2} \\ \sin \theta_1 &= \frac{\sqrt{3}}{4} \times \frac{2}{\sqrt{3}} = \frac{1}{2} \end{cases}$$
, donc $\theta_1 = \frac{\pi}{6}$

On en déduit que :

$$z_1 = \frac{\sqrt{3}}{2} e^{i\frac{\pi}{6}}$$

2.

2. a. Montrons que le suite (r_n) est géométrique.

Pour tout entier naturel n on a d'après la question 1°) $r_0 = 1$ et :

$$z_{n+1} = \left(\frac{\sqrt{3}}{2} e^{i\frac{\pi}{6}}\right) z_n$$

donc en passant au module on obtient :

$$r_{n+1} = \left| \frac{\sqrt{3}}{2} e^{i\frac{\pi}{6}} \right| r_n$$

soit

$$r_{n+1} = \frac{\sqrt{3}}{2}r_n$$

De ce fait, la suite (r_n) est géométrique de raison $q=rac{\sqrt{3}}{2}$ et de premier terme $r_0=1$. On a donc :

$$\forall n \in \mathbb{N} \; ; \; r_n = \left(\frac{\sqrt{3}}{2}\right)^n$$

2. b. Limite de OA_n .

- La suite (r_n) est géométrique de raison $q = \frac{\sqrt{3}}{2} \in]-1$; 1[, de ce fait elle tend vers 0 quand n tend vers $+\infty$.
- En outre A_n étant le point d'affixe z_n on a : $OA_n = |z_n| = r_n$

De ce fait:

$$\lim_{n \to +\infty} OA_n = 0$$

3. Algorithme.

3. a. Pour P = 0, 5, l'algorithme affiche n = 5, en effet on a :

	n	R	P	Test du $tant que : R > P$	
Initialisations	0	1	0, 5	Vrai	
Traitement	1	0,866	0, 5	Vrai	
	2	0,75	0, 5	Vrai	
	3	0,6495	0, 5	Vrai	
	4	0,5625	0, 5	Vrai	
	5	0,487	0,5	Faux	
Sortie	Afficher 5				

3. b. Cet algorithme calcule le premier rang n_0 à partir duquel r_{n_0} est inférieur ou égal à P.

Même si ce n'est pas demandé, on peut vérifier cette assertion.

Pour P=0,01, cela revient à résoudre dans $\mathbb N$ l'inéquation : $r_n\leq 0,01$.

$$r_n \le 0,01 \Longleftrightarrow \left(\frac{\sqrt{3}}{2}\right)^n \le 0,01$$

en composant par la fonction \ln strictement croissante sur \mathbb{R}_+^*

$$r_n \le 0,01 \Longleftrightarrow n \ln\left(\frac{\sqrt{3}}{2}\right) \le \ln 0,01$$

$$\iff n \ge \frac{\ln 0,01}{\ln\left(\frac{\sqrt{3}}{2}\right)} \approx 32,016$$

Le premier entier qui vérifie cette inéquation est bien n=33.

4. Construction.

4. a. Montrons que le triangle OA_nA_{n+1} est rectangle en A_{n+1} .

En utilisant le fait que :
$$r_{n+1} = \frac{\sqrt{3}}{2} r_n$$
, et que : $z_{n+1} = \left(\frac{\sqrt{3}}{2} \operatorname{e}^{\operatorname{i} \frac{\pi}{6}}\right) z_n$, on a
$$(OA_{n+1})^2 + (A_{n+1}A_n)^2 = (r_{n+1})^2 + |z_{n+1} - z_n|^2 \\ = \left(\frac{\sqrt{3}}{2} r_n\right)^2 + \left|\left(\frac{\sqrt{3}}{2} \operatorname{e}^{\operatorname{i} \frac{\pi}{6}}\right) z_n - z_n\right|^2 \\ = \left(\frac{\sqrt{3}}{2}\right)^2 r_n^2 + \left|\left(\frac{\sqrt{3}}{2} \operatorname{e}^{\operatorname{i} \frac{\pi}{6}}\right) - 1\right|^2 |z_n|^2 \\ = r_n^2 \left(\left(\frac{\sqrt{3}}{2}\right)^2 + \left|\frac{\sqrt{3}}{2} \operatorname{e}^{\operatorname{i} \frac{\pi}{6}} - 1\right|^2\right)$$

En utilisant la question 1°): $z_1 = \frac{3}{4} + \frac{\sqrt{3}}{4}i = \frac{\sqrt{3}}{2}e^{i\frac{\pi}{6}}$ donc

$$=r_n^2\left(\left(\frac{3}{4}\right) + \left|\frac{3}{4} + i\frac{\sqrt{3}}{4} - 1\right|^2\right)$$

soit

$$= r_n^2 \left(\frac{3}{4} + \left(\frac{3}{4} - 1 \right)^2 + \frac{3}{16} \right)$$
$$= r_n^2 \left(\frac{3}{4} + \frac{1}{16} + \frac{3}{16} \right)$$
$$= r_n^2 = (OA_n)^2$$

On a donc montré que pour tout entier n on a :

$$(OA_{n+1})^2 + (A_{n+1}A_n)^2 = (OA_n)^2$$

de ce fait, d'après la réciproque du théorème de Pythagore, le triangle OA_nA_{n+1} est rectangle en A_{n+1} .

Remarque: Pour cette question, on pouvait aussi utiliser un calcul d'argument.

4. b. Supposons que $z_n=r_n\,\mathrm{e}^{\,\mathrm{i}}\frac{n\pi}{6}$, alors pour tout entier n on a :

$$A_n(z_n) \in (Oy) \iff \arg z_n = \frac{\pi}{2} + k\pi \; ; \; k \in \mathbb{Z}$$

$$\iff \frac{n\pi}{6} = \frac{\pi}{2} + k\pi \; ; \; k \in \mathbb{Z} \; ; \; n \in \mathbb{N}$$

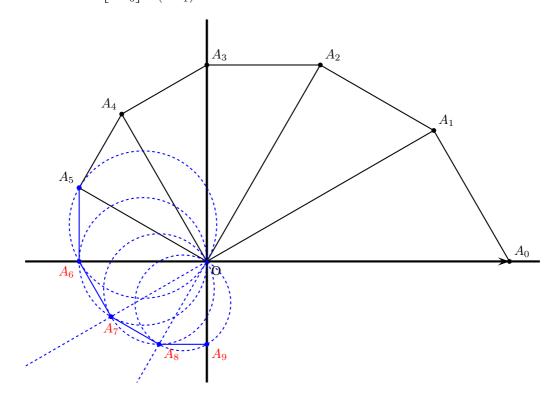
$$\iff n\pi = 3\pi + 6k\pi \; ; \; k \in \mathbb{Z} \; ; \; n \in \mathbb{N}$$

$$\iff n = 3 + 6k \; ; \; k \in \mathbb{Z} \; ; \; n \in \mathbb{N}$$

Les valeurs de $n \in \mathbb{N}$ pour lesquelles A_n est un point de l'axe des ordonnées sont donc de la forme n = 3 + 6k; $k \in \mathbb{N}$ Cela correspond donc aux points : $A_3, A_9, A_{15}, \cdots A_{3+6k}, \cdots$; $k \in \mathbb{N}$.

4. c. Figure à compléter :

- A_6 a pour affixe z_6 d' argument $\frac{6\pi}{6} = \pi$; ce point est donc sur l'axe des abscisses. Comme OA_5A_6 est rectangle en A_6 , on trace le cercle de diamètre $[OA_5]$; le point A_6 est à l'intersection de ce cercle et de l'axe des abscisses.
- A_7 a pour affixe z_7 d'argument $\frac{7\pi}{6}$; donc les points A_1 , O et A_7 sont alignés. Le point A_7 se trouve donc à l'intersection du cercle de diamètre $[OA_6]$ et (OA_1) .



On vérifie bien que les points A_3 et A_9 appartiennent à l'axe des ordonnées.

Exercice 4. Étude de fonctions

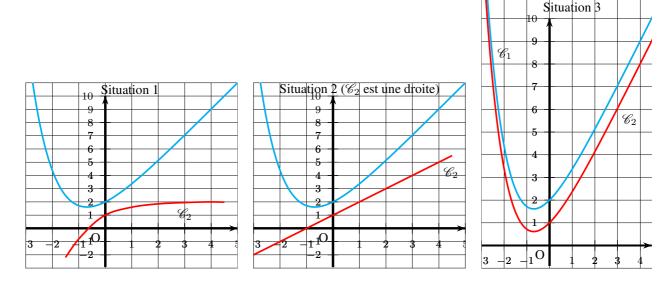
7 points

Commun à tous les candidats

Partie A

Le point A de coordonnées (0; 2) appartient à la courbe \mathcal{C}_1 et le point B de coordonnées (0; 1) appartient à la courbe \mathcal{C}_2 .

1. Dans les trois situations ci-dessous, on a dessiné la courbe représentative \mathscr{C}_1 de la fonction f. Sur l'une d'entre elles, la courbe \mathscr{C}_2 de la fonction dérivée f' est tracée convenablement. Laquelle ? Expliquer le choix effectué.



Il suffit d'étudier le signe de f'(x) dans chacun des cas.

- La situation 3 est impossible car la fonction f, de courbe représentative \mathcal{C}_1 , est visiblement décroissante puis croissante sur cet intervalle donc de dérivée négative puis positive. Or la courbe \mathcal{C}_2 , supposée être celle de f', est celle d'une fonction strictement positive.
- La situation 2 est impossible car la courbe \mathscr{C}_2 , supposée être celle de f', coupe l'axe des abscisse en x=-1 et donc f'(-1)=0. Cela implique que la courbe représentative \mathscr{C}_1 présente une tangente horizontale en x=-1 ce qui n'est pas le cas.
- C'est donc la situation 1 qui est correcte.
- **2.** L'équation réduite de la droite Δ tangente à la courbe \mathscr{C}_1 en A(0; 2) est donnée par :

$$\Delta : y = f'(0)(x - 0) + f(0)$$

- Or le point A de coordonnées (0; 2) appartient à la courbe \mathscr{C}_1 de f donc f(0) = 2;
- le point B de coordonnées (0; 1) appartient à la courbe \mathscr{C}_2 de f' donc f'(0) = 1;

donc

$$\Delta: y = x + 2$$

- 3. On sait que pour tout réel x, $f(x) = e^{-x} + ax + b$ où a et b sont deux nombres réels.
- 3. a. Déterminons la valeur de b en utilisant les renseignements donnés par l'énoncé.
 - Le point A de coordonnées (0; 2) appartient à la courbe \mathcal{C}_1 de f donc f(0) = 2;

$$f(0) = 2 \iff e^0 + b = 2 \iff b = 1$$

et donc

$$\forall x \in \mathbb{R}, \ f(x) = e^{-x} + ax + 1$$

3. b. Prouvons que a=2.

• D'après la question 3a), on a :

$$\forall x \in \mathbb{R}, f(x) = e^{-x} + ax + 1$$

• Or le point B de coordonnées (0; 1) appartient à la courbe \mathscr{C}_2 de f' donc f'(0) = 1; Pour tout réel x, la fonction f est dérivable et :

$$\forall x \in \mathbb{R}, \ f'(x) = -e^{-x} + a$$

donc

$$f'(0) = 1 \Longleftrightarrow -e^0 + a = 1 \Longleftrightarrow \boxed{a=2}$$

Pour conclure :

$$\forall x \in \mathbb{R}, \ f(x) = e^{-x} + 2x + 1$$

4. Étudier les variations de la fonction f sur \mathbb{R} .

Pour tout réel x, la fonction f est dérivable et :

$$\forall x \in \mathbb{R}, \ f'(x) = -\mathbf{e}^{-x} + 2$$

• De plus :

$$\forall x \in \mathbb{R} ; f'(x) = 0 \Longleftrightarrow -e^{-x} + 2 = 0 \Longleftrightarrow e^{-x} = 2$$

soit

$$\forall x \in \mathbb{R} ; \left[f'(x) = 0 \iff x = -\ln 2 \right]$$

• Et

$$\forall x \in \mathbb{R} \; ; \; f'(x) > 0 \Longleftrightarrow -e^{-x} + 2 > 0$$
$$\iff 2 > e^{-x}$$

La fonction ln étant croissante sur]0; $+\infty[$, on a par composition :

$$f'(x) > 0 \Longleftrightarrow \ln 2 > -x$$

$$\forall x \in \mathbb{R} ; \quad f'(x) > 0 \Longleftrightarrow x > -\ln 2$$

• En conséquence :

$$\begin{cases} f'(x) > 0 \Longleftrightarrow x > -\ln 2 \\ f'(x) = 0 \Longleftrightarrow x = -\ln 2 \end{cases} \Longrightarrow f'(x) < 0 \Longleftrightarrow x < -\ln 2$$

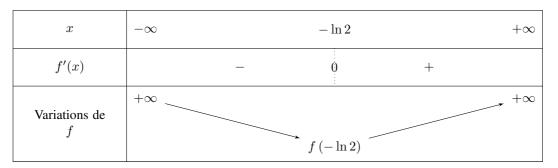
La fonction f est donc croissante sur $[-\ln 2; +\infty[$ et décroissante sur $]-\infty; -\ln 2]$.

5. Déterminer la limite de la fonction f en $+\infty$.

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} (2x+1) = +\infty$$

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} e^{-x} = 0$$

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} e^{-x} + 2x + 1 = +\infty \text{ soit } \lim_{\substack{x \to +\infty \\ x \to +\infty}} f(x) = +\infty$$



avec
$$f(-\ln 2) = 3 - 2\ln 2 \approx 1,6$$

Partie B

Soit g la fonction définie sur \mathbb{R} par g(x) = f(x) - (x+2).

1. 1. a. Montrer que la fonction g admet 0 comme minimum sur \mathbb{R} .

$$\forall x \in \mathbb{R} ; g(x) = f(x) - (x+2)$$
$$= e^{-x} + 2x + 1 - (x+2)$$
$$g(x) = e^{-x} + x - 1$$

La fonction g est dérivable sur \mathbb{R} et $g'(x) = f'(x) - 1 = -e^{-x} + 1$.

On obtient facilement:

$$\left. \begin{array}{l} g'(x) > 0 \Longleftrightarrow x > 0 \\ g'(x) = 0 \Longleftrightarrow x = 0 \end{array} \right\} \Longrightarrow \ g'(x) < 0 \Longleftrightarrow x < 0$$

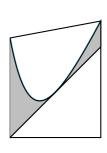
x	$-\infty$	0		$+\infty$
g'(x)		- 0	+	
Variations de g	$g\left(0\right)=0$,

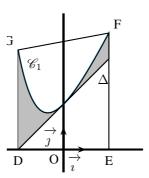
et donc le minimum de g est atteint en 0 et vaut, g(0) = 0.

1. b. En déduire la position de la courbe \mathscr{C}_1 par rapport à la droite Δ .

On a montré à la question 2 de la partie A que $\Delta: y = x + 2$ donc la position relative de la courbe \mathscr{C}_1 par rapport à la droite Δ est donnée par le signe de $g(x)=f(x)-(x+2)=\mathrm{e}^{-x}+x-1$ Or g(x) est toujours positif d'après la question précédente et nul en 0.

De ce fait, la courbe \mathscr{C}_1 est toujours au-dessus de la droite Δ et les courbes ont un seul point d'intersection, le point A(0; 2).





2. Calculer, en unités d'aire, l'aire de la partie du logo colorée en gris (on donnera la valeur exacte puis la valeur arrondie à 10^{-2} du résultat).

Puisque d'après la question précédente, la courbe \mathscr{C}_1 est toujours au-dessus de la droite Δ , l'expression g(x) = f(x) - (x+2)est toujours positive

De ce fait, l'aire de la partie du logo colorée en gris, en unités d'aire, est donnée par :

$$\mathscr{A} = \int_{-2}^{2} g(x) \, dx = \int_{-2}^{2} \left(e^{-x} + x - 1 \right) dx = \left[-e^{-x} + \frac{x^{2}}{2} - x \right]_{-2}^{2}$$
$$= \left(-e^{-2} + \frac{2^{2}}{2} - 2 \right) - \left(-e^{2} + \frac{2^{2}}{2} + 2 \right)$$

$$\mathscr{A} = \int_{-2}^{2} g(x) \, dx = e^{2} - e^{-2} - 4 \approx 3,25 \ u.a.$$