BACCALAUREAT GENERAL

MATHEMATIQUES Série S

Enseignement Spécialité

Durée de l'épreuve : 4 heures

Coefficient: 9

Ce sujet comporte 7 pages numérotées de 1 à 7.

Les calculatrices électroniques de poche sont autorisées,

conformément à la réglementation en vigueur.

Le sujet est composé de 4 exercices indépendants.

Le candidat doit traiter tous les exercices.

Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu'il aura développée.

Il est rappelé que la qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l'appréciation des copies.

Exercice 1 (4 points) Commun à tous les candidats

Dans cet exercice, sauf indication contraire, les résultats seront arrondis au centième.

1. La durée de vie, exprimée en années, d'un moteur pour automatiser un portail fabriqué par une entreprise A est une variable aléatoire X qui suit une loi exponentielle de paramètre λ, où λ est un réel strictement positif.

On sait que $P(X \le 2) = 0.15$.

Déterminer la valeur exacte du réel λ.

Dans la suite de l'exercice on prendra 0,081 pour valeur de \(\lambda \).

2.

- a. Déterminer $P(X \ge 3)$.
- **b.** Montrer que pour tous réels positifs t et h, $P_{X \ge t}(X \ge t + h) = P(X \ge h)$.
- c. Le moteur a déjà fonctionné durant 3 ans. Quelle est la probabilité pour qu'il fonctionne encore 2 ans ?
- d. Calculer l'espérance de la variable aléatoire X et donner une interprétation de ce résultat.
- 3. Dans la suite de cet exercice, on donnera des valeurs arrondies des résultats à 10^{-3} .

L'entreprise A annonce que le pourcentage de moteurs défectueux dans la production est égal à 1%. Afin de vérifier cette affirmation 800 moteurs sont prélevés au hasard. On constate que 15 moteurs sont détectés défectueux.

Le résultat de ce test remet-il en question l'annonce de l'entreprise A ? Justifier. On pourra s'aider d'un intervalle de fluctuation.

Exercice 2 (4 points) Commun à tous les candidats

Pour chacune des propositions suivantes, indiquer si elle est vraie ou fausse et justifier la réponse choisie. Il est attribué un point par réponse exacte correctement justifiée. Une réponse non justifiée n'est pas prise en compte. Une absence de réponse n'est pas pénalisée.

1. Proposition 1

Toute suite positive croissante tend vers $+\infty$.

2.
$$g$$
 est la fonction définie sur $\left[-\frac{1}{2};+\infty\right[$ par $g(x)=2x\ln(2x+1)$.

Proposition 2

Sur
$$\left] -\frac{1}{2}; +\infty \right[$$
, l'équation $g(x) = 2x$ a une unique solution : $\frac{e-1}{2}$.

Proposition 3

Le coefficient directeur de la tangente à la courbe représentative de la fonction g au point d'abscisse $\frac{1}{2}$ est : $1 + \ln 4$.

3. L'espace est muni d'un repère orthonormé $(O; \vec{i}, \vec{j}, \vec{k})$.

 \mathscr{P} et \mathscr{R} sont les plans d'équations respectives : 2x + 3y - z - 11 = 0 et x + y + 5z - 11 = 0.

Proposition 4

Les plans \mathcal{P} et \mathcal{R} se coupent perpendiculairement.

Exercice 3 (5 points) Candidats ayant suivi la spécialité

Chaque jeune parent utilise chaque mois une seule marque de petits pots pour bébé. Trois marques X, Y et Z se partagent le marché. Soit *n* un entier naturel.

On note : X_n l'événement « la marque X est utilisée le mois n »,

 Y_n l'événement « la marque Y est utilisée le mois n »,

 Z_n l'événement « la marque Z est utilisée le mois n ».

Les probabilités des événements X_n , Y_n , Z_n sont notées respectivement x_n , y_n , z_n .

La campagne publicitaire de chaque marque fait évoluer la répartition. Un acheteur de la marque X le mois n, a le mois suivant :

- 50 % de chance de rester fidèle à cette marque,
- 40 % de chance d'acheter la marque Y,
- 10 % de chance d'acheter la marque Z.

Un acheteur de la marque Y le mois n, a le mois suivant :

- 30 % de chance de rester fidèle à cette marque,
- 50 % de chance d'acheter la marque X,
- 20 % de chance d'acheter la marque Z.

Un acheteur de la marque Z le mois n, a le mois suivant :

- 70 % de chance de rester fidèle à cette marque,
- 10 % de chance d'acheter la marque X,
- 20 % de chance d'acheter la marque Y.
- 1. a. Exprimer x_{n+1} en fonction de x_n , y_n et z_n .

On admet que :
$$y_{n+1} = 0.4 x_n + 0.3 y_n + 0.2 z_n$$
 et que $z_{n+1} = 0.1 x_n + 0.2 y_n + 0.7 z_n$

- **b.** Exprimer z_n en fonction de x_n et y_n . En déduire l'expression de x_{n+1} et y_{n+1} en fonction de x_n et y_n .
- 2. On définit la suite (U_n) par $U_n = \begin{pmatrix} x_n \\ y_n \end{pmatrix}$ pour tout entier naturel n.

On admet que, pour tout entier naturel
$$n$$
, $U_{n+1} = A \times U_n + B$ où $A = \begin{pmatrix} 0,4 & 0,4 \\ 0,2 & 0,1 \end{pmatrix}$ et $B = \begin{pmatrix} 0,1 \\ 0,2 \end{pmatrix}$

Au début de l'étude statistique (mois de janvier 2014 : n = 0), on estime que $U_0 = \begin{pmatrix} 0.5 \\ 0.3 \end{pmatrix}$.

On considère l'algorithme suivant :

Variables	n et i des entiers naturels. A, B et U des matrices
Entrée et Initialisation	Demander la valeur de n i prend la valeur 0 A prend la valeur $\begin{pmatrix} 0,4 & 0,4 \\ 0,2 & 0,1 \end{pmatrix}$ B prend la valeur $\begin{pmatrix} 0,1 \\ 0,2 \end{pmatrix}$ U prend la valeur $\begin{pmatrix} 0,5 \\ 0,3 \end{pmatrix}$
Traitement	Tant que $i < n$ U prend la valeur $A \times U + B$ i prend la valeur $i + 1$ Fin de Tant que
Sortie	Afficher U

- a. Donner les résultats affichés par cet algorithme pour n=1 puis pour n=3.
- b. Quelle est la probabilité d'utiliser la marque X au mois d'avril ?

Dans la suite de l'exercice, on cherche à déterminer une expression de U_n en fonction de n.

On note I la matrice $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et N la matrice I - A.

- 3. On désigne par C une matrice colonne à deux lignes.
 - a. Démontrer que $C = A \times C + B$ équivaut à $N \times C = B$.
 - **b.** On admet que N est une matrice inversible et que $N^{-1} = \begin{pmatrix} \frac{45}{23} & \frac{20}{23} \\ \frac{10}{23} & \frac{30}{23} \end{pmatrix}$.

En déduire que $C = \begin{pmatrix} \frac{17}{46} \\ \frac{7}{23} \end{pmatrix}$.

- **4.** On note V_n la matrice telle que $V_n = U_n C$ pour tout entier naturel n.
 - **a.** Montrer que, pour tout entier naturel n, $V_{n+1} = A \times V_n$.
 - **b.** On admet que $U_n = A^n \times (U_0 C) + C$. Quelles sont les probabilités d'utiliser les marques X, Y et Z au mois de mai ?

EXERCICE 4 (7 points) Comm

Commun à tous les candidats.

Partie A

f est une fonction définie et dérivable sur \mathbf{R} . f' est la fonction dérivée de la fonction f.

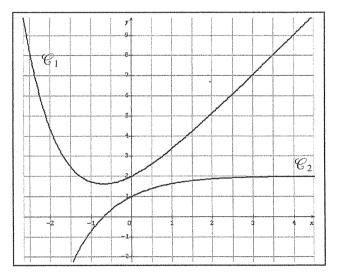
Dans le plan muni d'un repère orthogonal, on nomme \mathcal{C}_1 la courbe représentative de la fonction f et \mathcal{C}_2 la courbe représentative de la fonction f'.

Le point A de coordonnées (0; 2) appartient à la courbe \mathcal{C}_1 .

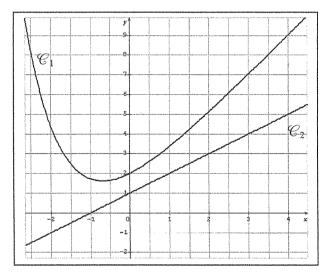
Le point B de coordonnées (0; 1) appartient à la courbe \mathcal{C}_2 .

1. Dans les trois situations ci-dessous, on a dessiné la courbe représentative \mathcal{C}_1 de la fonction f. Sur l'une d'entre elle, la courbe \mathcal{C}_2 de la fonction dérivée f' est tracée convenablement. Laquelle ? Expliquer le choix effectué.

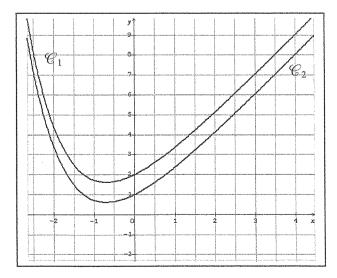
Situation 1



Situation 2 (C_2 est une droite)



Situation 3



2. Déterminer l'équation réduite de la droite Δ tangente à la courbe \mathcal{C}_1 en A.

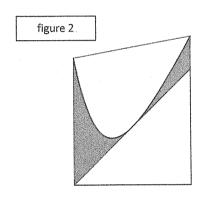
- 3. On sait que pour tout réel x, $f(x) = e^{-x} + ax + b$ où a et b sont deux nombres réels.
 - a. Déterminer la valeur de b en utilisant les renseignements donnés par l'énoncé.
 - **b.** Prouver que a = 2.
- 4. Étudier les variations de la fonction f sur \mathbf{R} .
- 5. Déterminer la limite de la fonction f en $+\infty$.

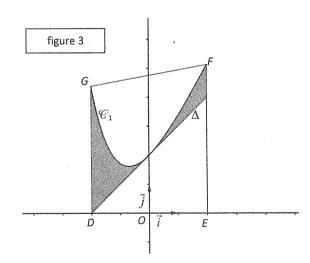
Partie B

Soit g la fonction définie sur R par g(x) = f(x) - (x+2).

- 1. a. Montrer que la fonction g admet 0 comme minimum sur \mathbb{R} .
 - **b.** En déduire la position de la courbe \mathcal{C}_1 par rapport à la droite Δ .

La figure 2 ci-dessous représente le logo d'une entreprise. Pour dessiner ce logo, son créateur s'est servi de la courbe \mathcal{C}_1 et de la droite Δ , comme l'indique la figure 3 ci-dessous. Afin d'estimer les coûts de peinture, il souhaite déterminer l'aire de la partie colorée en gris.





Le contour du logo est représenté par le trapèze DEFG où :

- D est le point de coordonnées (-2; 0),
- E est le point de coordonnées (2; 0),
- F est le point d'abscisse 2 de la courbe \mathcal{C}_1 ,
- G est le point d'abscisse -2 de la courbe \mathcal{C}_1 .

La partie du logo colorée en gris correspond à la surface située entre la droite Δ , la courbe \mathcal{C}_1 , la droite d'équation x = -2 et la droite d'équation x = 2.

2. Calculer, en unités d'aire, l'aire de la partie du logo colorée en gris (on donnera la valeur exacte puis la valeur arrondie à 10⁻² du résultat).