

Baccalauréat 2014 - S Antilles Guyane

Série S Obli. et Spé. Jeudi 19 juin 2014 Correction

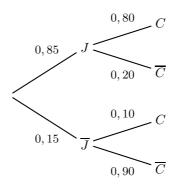
Exercice 1. Probabilités

5 points

Commun à tous les candidats

Partie A

1. 1. a. L'arbre pondéré est le suivant :



1. b. D'après l'arbre:

$$p\left(\overline{J}\cap C\right) = p_{\overline{J}}(C) \times p\left(\overline{J}\right) = 0.15 \times 0.10 = 0.015$$

1. c. J et \overline{J} formant une partition de l'univers, la formule des probabilités totales donne :

$$p(C) = p(C \cap \overline{J}) + p(C \cap J)$$

$$= p_J(C) \times p(J) + 0.015$$

$$p(C) = 0.015 + 0.85 \times 0.80$$

$$p(C) = 0.695$$

1. d. Il s'agit de calculer une probabilité conditionnelle :

$$p_C(\overline{J}) = \frac{p(\overline{J} \cap C)}{p(C)} = \frac{0.015}{0.695} \approx 0.0216$$

2. La variable aléatoire X suit une loi normale de de moyenne $\mu=90$ et d'écart-type $\sigma=2$. La calculatrice nous donne alors arrondi à 10^{-4} près :

$$P(87 \le X \le 89) \approx 0.2417$$

Remarque: Sur la TI Voyage 200

TIStat.normFDR $(87, 89, 90, 2) \approx 0.2417303035$

3. De même la calculatrice nous donne directement arrondi à 10^{-4} près :

$$P(X \ge 91) \approx 0.3085$$

Remarque: Sur la TI Voyage 200

TIStat.normFDR($91, \infty, 90, 2$) ≈ 0.30853753322

Remarque: on peut aussi calculer $p(X \ge 91) = 1 - p((0 \le X \le 91) \approx 0.3085$.

Partie B

Cet ostréiculteur affirme que 60 % de ses huîtres ont une masse supérieure à 91 g.

- 1. Soit F la variable aléatoire qui à tout échantillon de 120 huîtres associe la fréquence de celles qui ont une masse supérieure à 91 g. Après en avoir vérifié les conditions d'application, donner un intervalle de fluctuation asymptotique au seuil de 95 % de la variable aléatoire F.
 - 1. Analyse des données :
 - « Dans un échantillon de taille n=120, il constate que 65 de ces huîtres ont une masse supérieure à 91 g. ». Donc la fréquence observée d'huîtres associe la fréquence de celles qui ont une masse supérieure à 91 g.

$$F = \frac{65}{120} = 0.5417 = 54,17\%$$

- Cet ostréiculteur affirme que p=60% de ses huîtres ont une masse supérieure à 91 g.
- 2. Intervalle de fluctuation : On va regarder si la fréquence observée F appartient à l'intervalle de fluctuation.

Théorème 1 (Intervalle de fluctuation asymptotique)

Si les conditions suivantes sont remplies :
$$\begin{cases} \checkmark & n \geq 30 \\ \checkmark & np \geq 5 \\ \checkmark & n(1-p) \geq 5 \end{cases}$$

Alors un intervalle de fluctuation asymptotique au seuil de confiance de 95% de la fréquence F_n d'un caractère dans un échantillon de taille n est, si p désigne la proportion de ce caractère dans la population :

$$I_n = \left[p - 1,96 \frac{\sqrt{p(1-p)}}{\sqrt{n}} ; p + 1,96 \frac{\sqrt{p(1-p)}}{\sqrt{n}} \right]$$

On a n = 1000, p = 80% alors on sait que puisque :

$$\begin{cases}
\checkmark & n = 120 \ge 30 \\
\checkmark & np = 120 \times 60\% = 72 \ge 5 \\
\checkmark & n(1-p) = 120 \times 40\% = 48 \ge 5
\end{cases}$$

Les conditions de validité sont réunies donc l'intervalle de fluctuation au seuil 95% pour la fréquence F_{120} est :

$$I_{120} = \left[p - 1,96 \frac{\sqrt{p(1-p)}}{\sqrt{n}} \; ; \; p + 1,96 \frac{\sqrt{p(1-p)}}{\sqrt{n}} \right] = \left[0,6 - 1,96 \frac{\sqrt{0,6 \times 0,4}}{\sqrt{120}} \; ; \; 0,6 + 1,96 \frac{\sqrt{0,6 \times 0,4}}{\sqrt{120}} \right]$$

Les bornes de l'intervalle sont :

$$\left\{ \begin{array}{ll} p-1,96\frac{\sqrt{p(1-p)}}{\sqrt{n}} &\approx 0,\!512\,346 &: \text{ on donne la valeur approchée par défaut} \\ p+1,96\frac{\sqrt{p(1-p)}}{\sqrt{n}} &\approx 0,\!687\,654 &: \text{ on donne la valeur approchée par excès} \end{array} \right.$$

soit

$$I_{120} \approx [51, 23\%; 68, 77\%]$$

2. Que peut penser le restaurateur de l'affirmation de l'ostréiculteur ?

La fréquence observée d'huitres pesant plus de 91 g est $F=\frac{65}{120}\approx 0{,}541\,7.$ On a

$$F \approx 54,17\% \in I_{120} \approx [52,23\%; 68,77\%]$$

l'hypothèse selon laquelle p=0.60 ne peut être rejetée.

Exercice 2. 6 points

Commun à tous les candidats

Partie A

1. Dresser, en le justifiant, le tableau donnant les variations de la fonction g sur \mathbb{R} (les limites de g aux bornes de son ensemble de définition ne sont pas attendues). En déduire le signe de g(x).

Soit g la fonction définie et dérivable sur l'ensemble $\mathbb R$ par

$$g(x) = 1 - x + e^x.$$

Variations

g est dérivable sur $\mathbb R$ comme composée de fonctions qui le sont, et pour tout réel x :

$$q'(x) = -1 + e^x$$

On a alors:

- On a pour tout réel x:

$$g'(x) = 0 \iff e^x - 1 = 0$$

 $g'(x) = 0 \iff e^x = 1$

En composant par la fonction \ln définie sur $]0\:;\: +\infty[,$ on a :

$$g'(x) > 0 \Longleftrightarrow x > 0$$

soit

$$\forall x \in \mathbb{R} \; ; \; \boxed{g'(x) = 0 \Longleftrightarrow x = 0}$$

- En outre pour tout réel x:

$$g'(x) > 0 \iff e^x - 1 > 0$$

 $g'(x) > 0 \iff e^x > 1$

La fonction \ln étant croissante sur]0; $+\infty[$, on a par composition :

$$g'(x) > 0 \iff x > 0$$

$$\forall x \in \mathbb{R} ; \ g'(x) > 0 \Longleftrightarrow x > 0$$

Pour conclure

$$\left. \begin{array}{l} g'(x) > 0 \Leftrightarrow x > 0 \\ g'(x) = 0 \Leftrightarrow x = 0 \end{array} \right\} \Longrightarrow \ g'(x) < 0 \Longleftrightarrow x < 0$$

La fonction g est donc croissante sur \mathbb{R}_+ et décroissante sur \mathbb{R}_- .

x	$-\infty$	0	$+\infty$
g'(x)	_	0	+
Variations de g			

• Étude de signe

On déduit du tableau précédent que, pour tout réel $x, g(x) \ge 2 > 0$.

2. Étude en $-\infty$.

La fonction f définie sur l'ensemble $\mathbb R$ des nombres réels par

$$f(x) = x + 1 + \frac{x}{e^x}.$$

$$\lim_{\substack{x \to -\infty \\ x \to -\infty}} \frac{(x+1) = -\infty}{\frac{x}{e^x}} = -\infty$$

$$\lim_{\substack{x \to -\infty \\ x \to -\infty}} \frac{x}{e^x} = -\infty$$

$$\lim_{\substack{x \to -\infty \\ x \to -\infty}} f(x) = -\infty$$

Étude en $+\infty$

$$\lim_{\substack{x \to +\infty}} (x+1) = +\infty$$

$$\lim_{\substack{x \to +\infty}} \frac{x}{\mathrm{e}^x} = \lim_{\substack{x \to +\infty}} \left(\frac{\mathrm{e}^x}{x}\right)^{-1} = 0$$

$$\lim_{\substack{x \to +\infty}} \frac{1}{\mathrm{e}^x} \lim_{\substack{x \to +\infty}} f(x) = +\infty$$

Rappel

Propriété 1 (Limites liées à la fonction exponentielle)

• (1):
$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$
 • (2): $\lim_{x \to -\infty} x e^x = 0$ • (3): $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$

3. Pour tout réel x, on a :

$$f'(x) = 1 + \frac{1 e^x - x e^x}{(e^x)^2}$$

$$= 1 + \frac{e^x (1 - x)}{e^x \times e^x}$$

$$= 1 + \frac{1 - x}{e^x}$$

$$= \frac{e^x + 1 - x}{e^x}$$

$$f'(x) = e^{-x} g(x).$$

$$\forall x \in \mathbb{R} ; f'(x) = e^{-x} g(x)$$

4. On a vu plus haut que, pour tout réel x, g(x) > 0, et comme par ailleurs $e^{-x} > 0$, on en déduit que f'(x) > 0. On obtient alors le tableau de variations suivant :

x	$-\infty$	$+\infty$
f'(x)	+	
f	$-\infty$	$+\infty$

5. Démontrer que l'équation f(x) = 0 admet une unique solution réelle α sur \mathbb{R} .

Théorème 2 (Corolaire du théorème des valeurs intermédiaires)

Si f est une fonction définie, **continue** et strictement **monotone** sur un [a ; b], alors, pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet <u>une unique solution</u> dans l'intervalle [a ; b].

Remarque: Le première démonstration rigoureuse de ce théorème est due au mathématicien autrichien Bernard Bolzano (1781-1848, Prague, Empire d'Autriche).

- La fonction f est **continue** et **strictement croissante** sur l'intervalle $]-\infty$; $+\infty[$;
- L'image par f de l'intervalle $]-\infty\; ;\; +\infty[$ est $]-\infty\; ;\; +\infty[$ d'après le tableau de variations.
- Le réel k = 0 appartient à l'intervalle image $] \infty$; $+ \infty [$.

Donc, d'après le corollaire du théorème des valeurs intermédiaires, l'équation f(x) = k = 0 admet une solution unique α sur l'intervalle $]-\infty$; $+\infty[$.

6. 6. a. La tangente T au point d'abscisse x=0 a pour équation réduite :

$$y = f'(0)(x - 0) + f(0)$$

$$T) : y = 2x + 1$$

6. b. Posons, pour tout réel x, k(x) = f(x) - (2x + 1), alors :

$$k(x) = x + 1 + \frac{x}{e^x} - (2x + 1)$$
$$= \frac{x}{e^x} - x$$
$$= \frac{x}{e^x} (1 - e^x).$$

Dressons alors un tableau de signes :

x	$-\infty$		0		$+\infty$
x		_	0	+	
$1 - e^{x}$		+	0	_	
k(x)		_	0	_	

On en déduit que ${\mathcal C}$ est située en dessous de T.

Partie B

1. Pour tout réel x:

$$H'(x) = -e^{-x} + (-x-1)(-e^{-x}) = e^{-x}(x+1-1) = xe^{-x} = h(x),$$

la fonction H est donc une primitive de h sur \mathbb{R} .

2. Sur [1; 3], $\mathcal C$ est en dessous de T, l'aire $\mathcal A$ du domaine $\mathcal D$ est donc :

$$\mathcal{A} = \int_{3}^{4} ((2x+1) - f(x)) dx$$

$$= \int_{1}^{3} x - h(x) dx$$

$$= \left[\frac{x^{2}}{2} - H(x) \right]_{1}^{3}$$

$$\mathcal{A} = 4 + 4e^{-3} - 2e^{-1}$$

$$\mathcal{A} = 4 + 4e^{-3} - 2e^{-1}$$

Exercice 3. Vrai/Faux

4 points

Commun à tous les candidats

1. La proposition est **fausse** : On a :

$$\overrightarrow{AB}(-2; 4; -1) \text{ et } \overrightarrow{AC}(6; -12; 3)$$

Ces deux vecteurs sont colinéaires car

$$\overrightarrow{AC} = -3\overrightarrow{AB}$$

donc les trois points A, B et C sont alignés et ne définissent pas un plan.

2. La proposition est vraie.

On vérifie aisément que les coordonnées de chacun des points A, B et D vérifient l'équation

$$x - 2z + 9 = 0$$

3. La proposition est fausse.

la droite dont la représentation paramétrique est donnée dans l'énoncé est dirigée par le vecteur \overrightarrow{u} $\left(\frac{3}{2}; -3; -\frac{3}{2}\right)$, ce vecteur n'étant pas colinéaire à \overrightarrow{AC} , il ne peut diriger (AC).

4. La proposition est **fausse**.

Le plan \mathcal{P} a pour vecteur normal, par exemple, $\overrightarrow{n}(2;-1;5)$, et vecteur $\overrightarrow{n}'(-3;-1;1)$ est normal au plan \mathcal{P}' . Ces deux vecteurs ne sont pas colinéaires, donc les deux plans ne sont pas parallèles.

Exercice 4. Obligatoire

5 points

Candidats n'ayant pas suivi l'enseignement de spécialité

1. 1. a. A l'aide d'une calculatrice, on obtient les valeurs suivantes :

						5		7	8
u_n	2	3,4	2,18	1,19	0,61	0,31	0,16	0,08	0,04

- **1. b.** Au vu du tableau précédent, on peut conjecturer que la suite (u_n) est décroissante à partir du rang 1.
- **2. 2. a.** Soit $\mathcal{P}(n)$ la propriété : « $u_n \ge \frac{15}{4} \times 0.5^n$ ». Montrons par récurrence que $\mathcal{P}(n)$ est vraie pour tout entier naturel n non nul.
 - Initialisation. On a $u_1=3.4$ et $\frac{15}{4}\times 0.5=1.875$, donc $\mathcal{P}(1)$ est vraie.
 - **Hérédité.** Supposons que, pour un certain entier naturel k non nul, la propriété $\mathcal{P}(k)$ est vraie, c'est-à -dire que :

$$u_k \geqslant \frac{15}{4} \times 0.5^k \tag{HR}$$

on doit alors démontrer que la propriété $\mathcal{P}(k+1)$ est vraie, c'est-à -dire que $u_{k+1} \geqslant \frac{15}{4} \times 0,5^{k+1}$. D'après (HR):

$$\begin{array}{rcl} u_k &\geqslant& \frac{15}{4}\times 0.5^k & \text{donc, en multipliant par } \frac{1}{5}: \\ &\frac{1}{5}u_k &\geqslant& \frac{3}{4}\times 0.5^k & \text{puis, en ajoutant membre à membre } 3\times 0.5^k: \\ &\frac{1}{5}u_k + 3\times 0.5^k &\geqslant& \frac{3}{4}\times 0.5^k + 3\times 0.5^k & \text{c'est-à-dire:} \\ &u_{k+1} &\geqslant& \frac{15}{4}\times 0.5^k \end{array}$$

Or, pour tout entier naturel k, $0.5^k \ge 0.5^{k+1}$, on en déduit donc que :

$$u_{k+1} \geqslant \frac{15}{4} \times 0.5^{k+1}$$

et la propriété $\mathfrak{P}(n)$ est donc héréditaire.

- Conclusion. La propriété $\mathcal{P}(n)$ est initialisée et héréditaire, elle est donc vraie pour tout entier naturel n non nul.
- **2. b.** Pour tout entier naturel n non nul:

$$u_{n+1} - u_n = \frac{1}{5}u_n + 3 \times 0.5^n - u_n$$
$$= 3 \times 0.5^n - \frac{4}{5}u_n$$
$$u_{n+1} - u_n = \frac{4}{5} \left(\frac{15}{4} \times 0.5^n - u_n\right)$$

D'après la question **1.a.**, cela entraı̂ne que $u_{n+1} - u_n \leq 0$.

2. c. D'après la question précédente la suite (u_n) est décroissante à partir d'un certain rang. D'après **2.a.**, pour tout entier naturel n non nul :

$$u_n \geqslant \frac{15}{4} \times 0.5^n > 0$$

La suite est donc minorée. On en déduit, d'après le théorème de convergence des suites monotones, que la suite (u_n) est convergente.

3. 3. a. Soit $n \in \mathbb{N}$, alors :

$$v_{n+1} = u_{n+1} - 10 \times 0.5^{n+1}$$

$$= \frac{1}{5}u_n + 3 \times 0.5^n - 10 \times 0.5 \times 0.5^n$$

$$= \frac{1}{5}u_n - 2 \times 0.5^n$$

$$= \frac{1}{5}(u_n - 10 \times 0.5^n)$$

$$v_{n+1} = \frac{1}{5}v_n.$$

La suite (v_n) est donc géométrique de raison $\frac{1}{5}$. Son premier terme vaut $v_0=u_0-10\times 0, 5^0=2-10=-8$.

3. b. La suite (v_n) étant géométrique, on a, pour tout entier naturel $n:v_n=-8\left(\frac{1}{5}\right)^n$. On en déduit que

$$-8 \times \left(\frac{1}{5}\right)^n = u_n - 10 \times 0.5^n$$

et donc que :

$$\forall n \in \mathbb{N} \; ; \; u_n = -8 \times \left(\frac{1}{5}\right)^n + 10 \times 0.5^n$$

3. c. Limite.

Théorème 3

Si le réel q est tel que : -1 < q < 1 on a

$$\lim_{n \to +\infty} q^n = 0$$

 $\text{Ici on a } -1 < \tfrac{1}{5} < 1 \text{, donc } \lim_{n \to +\infty} \ \left(\frac{1}{5}\right)^n = 0 \text{, de même}: -1 < 0.5 < 1 \text{, donc } \lim_{n \to +\infty} \ 0.5^n = 0.$

On en déduit par opérations sur les limite que

$$\lim_{n \to +\infty} u_n = 0$$

4. L'algorithme complet est :

Entrée: n et u sont des nombres

Initialisation: n prend la valeur 0

 \boldsymbol{u} prend la valeur 2

Traitement : Tant que u>0,01

n prend la valeur n+1 (2)

u prend la valeur $\frac{1}{5}u + 3 \times 0,5^{n-1}$ (3)

(1)

Fin Tant que

Sortie: Afficher n

Exercice 4. 5 points

Candidats ayant suivi l'enseignement de spécialité

1. 1. a. x et y sont des entiers naturels tels que 24x + 45y = 438, par conséquent :

•
$$24x \le 438$$
 d'où $x \le \frac{438}{24} = 18,25$, donc $x \le 18$;

•
$$45y \leqslant 438$$
 d'où $y \leqslant \frac{438}{45} \approx 9,73$, donc $y \leqslant 9$.

1. b. Voici l'algorithme complété :

Entrée : x et y sont des nombres

Traitement : Pour x variant de 0 à 18 (1)

Pour y variant de 0 à 9 (2)

Si 24x + 45y = 438 (3)

Afficher x et yFin Si

Fin Pour

Fin Pour

- 1. c. Le coût total de réservation étant de 438 €, et 438 étant égal à 146×3 , ce montant est multiple de 3!
- **1. d. 1. d. 1.** Les entiers 8 et 15 étant premiers entre eux, le théorème de Bézout entraı̂ne l'existence d'un couple (x ; y) d'entiers relatifs tels que 8x + 15y = 1.
- **1. d. 2.** On a de façon évidente $8 \times 2 + 15 \times (-1) = 1$, le couple (2; -1) est donc une solution particulière.
- **1. d. 3.** On a $8 \times 2 + 15 \times (-1) = 1$, donc, en multipliant par 146 :

$$8 \times 292 + 15 \times (-146) = 146.$$

Soit (x; y) un autre couple solution de (E), alors :

$$8x + 15y = 8 \times 292 + 15 \times (-146) \iff 8(x - 292) = 15(-y + 146). \tag{1}$$

15 et 8 sont premiers entre eux et 15 divise 8(x-292), donc, d'après un théorème de Gauss, 15 divise x-292.

Il existe donc un entier relatif k tel que x-292=15k. La relation (1) entraı̂ne alors que $8\times15k=15(-y+146)$, d'où y=-146-8k.

Les couples solutions sont donc de la forme (292 + 15k ; -146 - 8k).

Réciproquement, de tels couples sont bien solutions de (E) car :

$$8(292 + 15k) + 15(-146 - 8k) = 146.$$

L'ensemble des solutions de (E) est donc

$$\mathscr{S}_E = \left\{ (292 + 15k \; ; \; -146 - 8k) \text{ où } k \in \mathbb{Z} \right\}$$

1. e. Soit x et y le nombre de nuitées passées respectivement dans les hébergements A et B, alors $24x + 45y = 438 \Leftrightarrow 8x + 15y = 146$. Il existe alors un entier relatif k tel que x = 292 + 15k, et par ailleurs $x \ge 0$ et $x \le 13$, d'où:

$$0 \leqslant 292 + 15k \leqslant 13 \Longleftrightarrow -\frac{292}{15} \leqslant k \leqslant -\frac{279}{15}$$

Comme $-\frac{292}{15}\approx -19.47$ et $-\frac{279}{15}=-18.6$, la seule possibilité est que k=-19. On en déduit que :

$$x=292+15\times(-19)=7$$
 et que $y=-146-8\times(-19)=6$

Ce randonneur a donc passé 7 nuits en hébergement A et 6 nuits en hébergement B.