ം Corrigé du baccalauréat S Nouvelle-Calédonie & Wallis et Futuna രം 26 février 2018

Exercice 1 (4 points) Commun à tous les candidats

1. Une variable aléatoire X suit la loi normale de moyenne 100 et d'écart-type 36. On a alors, à 10^{-3} près :

a. $P(X \le 81,2) \approx 0,542$

c. $P(81,2 \le X \le 103,8) \approx 0,542$

b. $P(X \le 81,2) \approx 0,301$

d. $P(81,2 \le X \le 103,8) \approx 0,301$

Résultat obtenu à la calculatrice.

2. Une variable aléatoire *X* suit la loi normale de moyenne 50 et d'écart-type 2. Une variable aléatoire N suit la loi normale centrée réduite. On a alors :

a. $P(X > 52) = \frac{1 - P(-2 < N < 2)}{2}$ **c.** $P(X > 52) = \frac{1 - P(-1 < N < 1)}{2}$

b. P(X > 52) = 1 - P(-2 < N < 2)

Si X suit la loi normale de paramètres $\mu=50$ et $\sigma=2$, alors la loi N= $\frac{X-50}{\sigma}$ suit la loi normale centrée réduite.

$$X > 52 \iff X - 50 > 2 \iff \frac{X - 50}{2} > 1 \text{ donc } P(X > 52) = P(N > 1).$$

$$P(N > 1) = P(N < -1) \text{ et } P(-1 < N < 1) = 1 - (P(N < -1) + P(N > 1)) \text{ donc}$$

$$P(-1 < N < 1) = 1 - 2P(N > 1) \text{ et donc } P(N > 1) = \frac{1 - P(-1 < N < 1)}{2}.$$

3. Une variable aléatoire T suit une loi exponentielle telle que P(T > 2) = 0.5. Une valeur approchée à 10^{-2} près de la probabilité $P_{(T>2)}(T>5)$ est égale à :

a. 0,35

c. 0,53

b. 0,54

La loi exponentielle étant une loi à durée de vie sans vieillissement,

 $P_{(T>2)}(T>5) = P(T>5-2) = P(T>3).$

D'après le cours : P(T > 3) < P(T > 2).

Donc la seule réponse possible est celle qui est inférieure à 0,5 donc c'est 0,35.

4. Une urne contient 5 boules bleues et 3 boules grises indiscernables au toucher. On tire successivement de manière indépendante 5 boules avec remise dans cette urne. On note alors X la variable aléatoire comptant le nombre de boules grises tirées.

On note E(X) l'espérance de X. On a alors :

a.
$$E(X) = 3$$

c.
$$P(X \geqslant 1) \approx 0,905 \text{ à } 10^{-3} \text{ près}$$

d. $P(X \geqslant 1) \approx 0,095 \text{ à } 10^{-3} \text{ près}$

b.
$$E(X) = \frac{3}{8}$$

d.
$$P(X \ge 1) \approx 0.095 \text{ à } 10^{-3} \text{ près}$$

La probabilité de tirer une boule grise est égale à $\frac{3}{8}$; donc la variable aléatoire *X* suit la loi binomiale de paramètres n = 5 et $p = \frac{3}{8}$.

$$P(X \ge 1) = 1 - P(X = 0) = 1 - {5 \choose 0} \left(\frac{3}{8}\right)^0 \left(1 - \frac{3}{8}\right)^5 = 1 - \left(\frac{5}{8}\right)^5 \approx 0,905$$

Exercice 2 (5 points) **Commun à tous les candidats**

Soient les deux nombres complexes : $z_1 = 1 - i$ et $z_2 = -8 - 8\sqrt{3}i$. On pose : $Z = \frac{z_1}{z_2}$.

1. On calcule la forme algébrique de Z.

$$Z = \frac{z_1}{z_2} = \frac{1 - i}{-8 - 8\sqrt{3}i} = \frac{(1 - i)\left(-8 + 8\sqrt{3}i\right)}{\left(-8 - 8\sqrt{3}i\right)\left(-8 + 8\sqrt{3}i\right)} = \frac{-8 + 8\sqrt{3}i + 8i + 8\sqrt{3}}{64 + 192}$$
$$= \frac{-8 + 8\sqrt{3}}{256} + i\frac{8 + 8\sqrt{3}}{256} = \frac{-1 + \sqrt{3}}{32} + i\frac{1 + \sqrt{3}}{32}$$

- **2.** On écrit z_1 et z_2 sous forme exponentielle.
 - $|z_1| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$; $z_1 = \sqrt{2} \left(\frac{\sqrt{2}}{2} i \frac{\sqrt{2}}{2} \right) \operatorname{donc} \frac{\pi}{4}$ est un argument de z_1 La forme exponentielle de z_1 est $\sqrt{2} \operatorname{e}^{-i\frac{\pi}{4}}$.
 - $|z_2| = \sqrt{(-8)^2 + (-8\sqrt{3})^2} = \sqrt{256} = 16$; $z_2 = 16\left(-\frac{1}{2} \frac{\sqrt{3}}{2}\right)$ donc $-\frac{2\pi}{3}$ est un argument de z_2 .

La forme exponentielle de z_2 est $16 e^{-i\frac{2\pi}{3}}$.

3. On écrit *Z* sous forme exponentielle puis sous forme trigonométrique.

$$Z = \frac{z_1}{z_2} = \frac{\sqrt{2} e^{-i\frac{\pi}{4}}}{16 e^{-i\frac{2\pi}{3}}} = \frac{\sqrt{2}}{16} e^{i\left(-\frac{\pi}{4} + \frac{2\pi}{3}\right)} = \frac{\sqrt{2}}{16} e^{i\frac{5\pi}{12}} \operatorname{donc} Z = \frac{\sqrt{2}}{16} \left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right).$$

4. En comparant la forme algébrique et la forme trigonométrique de Z, on obtient :

$$\frac{\sqrt{2}}{16}\cos\frac{5\pi}{12} = \frac{-1+\sqrt{3}}{32} \iff \cos\frac{5\pi}{12} = \frac{16}{\sqrt{2}} \times \frac{-1+\sqrt{3}}{32} \iff \cos\frac{5\pi}{12} = \frac{-1+\sqrt{3}}{2\sqrt{2}}$$
$$\iff \cos\frac{5\pi}{12} = \frac{\sqrt{3}-1}{2\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \iff \cos\frac{5\pi}{12} = \frac{\sqrt{6}-\sqrt{2}}{4}$$

5. On admet que $\sin\left(\frac{5\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}$

et que pour tous réels a et b, $\cos a \cos b - \sin a \sin b = \cos(a+b)$.

Soit (E) l'équation : $(\sqrt{6} - \sqrt{2})\cos x - (\sqrt{6} + \sqrt{2})\sin x = -2\sqrt{3}$.

$$(E) \iff \left(\frac{\sqrt{6} - \sqrt{2}}{4}\right) \cos x - \left(\frac{\sqrt{6} + \sqrt{2}}{4}\right) \sin x = -\frac{\sqrt{3}}{2} \iff \cos \frac{5\pi}{12} \cos x - \sin \frac{5\pi}{12} \sin x = \cos \frac{5\pi}{6}$$

$$\iff \cos\left(x + \frac{5\pi}{12}\right) = \cos\frac{5\pi}{6} \iff x + \frac{5\pi}{12} = \frac{5\pi}{6} + k2\pi \text{ ou } x + \frac{5\pi}{12} = -\frac{5\pi}{6} + k2\pi \text{ avec } k \in \mathbb{Z}$$

$$\iff x = \frac{5\pi}{12} + k2\pi \text{ ou } x = -\frac{5\pi}{4} + k2\pi \text{ avec } k \in \mathbb{Z}$$

Exercice 3 (5 points) Candidats n'ayant pas suivi l'enseignement de spécialité

1. Soit la suite (u_n) définie pour tout entier naturel n par $\begin{cases} u_0 = 14 \\ u_{n+1} = 2u_n - 5. \end{cases}$

Soit la suite (t_n) définie pour tout entier naturel n par $t_n = u_n - 5$. Donc $u_n = t_n + 5$.

Affirmation A : La suite (t_n) est une suite géométrique.

$$t_{n+1} = u_{n+1} - 5 = (2u_n - 5) - 5 = 2u_n - 10 = 2(t_n + 5) - 10 = 2t_n + 10 - 10 = 2t_n$$

Donc la suite (t_n) est géométrique de raison q=2 et de 1^{er} terme $t_0=u_0-5=14-5=9$.

Affirmation A vraie

Affirmation B : Pour tout entier naturel n, $u_n = 9 \times 2^n + 5$.

La suite (t_n) est géométrique de raison q=2 et de premier terme $t_0=9$ donc, pour tout entier naturel n, $t_n=t_0\times q^n=9\times 2^n$.

Pour tout n, $u_n = t_n + 5$ donc pour tout n, $u_n = 9 \times 2^n + 5$.

Affirmation B vraie

2. Soit une suite (v_n) .

Affirmation C : Si, pour tout entier naturel n supérieur à 1, $-1 - \frac{1}{n} \le v_n \le 1 + \frac{1}{n}$ alors la suite (v_n) converge.

Soit (v_n) la suite définie pour tout entier naturel n par $v_n = \frac{(-1)^n}{2}$. Cette suite n'est pas convergente mais elle vérifie $-1 - \frac{1}{n} \leqslant v_n \leqslant 1 + \frac{1}{n}$.

Affirmation C fausse

3. Affirmation D: Pour tout entier naturel *n* non nul,

$$(8 \times 1 + 3) + (8 \times 2 + 3) + \dots + (8 \times n + 3) = n(4n + 7).$$

$$(8 \times 1 + 3) + (8 \times 2 + 3) + \dots + (8 \times n + 3) = 8 \times (1 + 2 + \dots + n) + 3n = 8 \times \frac{n(n+1)}{2} + 3n$$

$$=4n(n+1)+3n=n(4n+4+3)=n(4n+7)$$

Affirmation D vraie

4. Soit (w_n) une suite convergente.

Affirmation E : Si, à partir d'un certain rang, tous les termes de la suite (w_n) sont strictement positifs, alors la limite de la suite (w_n) est aussi strictement positive. Soit (w_n) la suite définie pour tout entier naturel non nul par $w_n = \frac{1}{n}$. Tous les termes de la suite sont strictement positifs et la suite (w_n) converge vers 0.

Affirmation E fausse

Exercice 4 (6 points) Commun à tous les candidats

Soit \mathbb{R} l'ensemble des nombres réels.

Partie A

Soit g la fonction définie et dérivable sur $\mathbb R$ telle que, pour tout réel x, $g(x) = -2x^3 + x^2 - 1$.

1. **a.** On étudie les variations de la fonction g en déterminant le signe de sa dérivée. $g'(x) = -6x^2 + 2x = 2x(-3x + 1)$

х	$-\infty$		0		<u>1</u> 3		+∞
2 <i>x</i>		-	ø	+		+	
-3x+1		+		+	ø	-	
g'(x)		_	•	+	•	_	

Donc la fonction g est strictement décroissante sur $]-\infty,0]$, strictement croissante sur $[0,\frac{1}{3}]$, et strictement décroissante sur $[\frac{1}{3},+\infty[$.

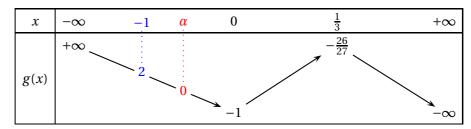
b. On détermine les limites de la fonction g en $-\infty$ et en $+\infty$.

La fonction g est une fonction polynôme donc sa limite en l'infini est la limite en l'infini de son terme de plus haut degré :

$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} -2x^3 = +\infty \text{ et } \lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} -2x^3 = -\infty$$

2.
$$g(0) = -1 < 0$$
, $g(\frac{1}{3}) = -\frac{26}{27} < 0$ et $g(-1) = 2 > 0$

On établit le tableau de variations de la fonction g:



On peut déduire de ce tableau de variations que l'équation g(x) = 0 admet dans \mathbb{R} une unique solution α , et que α appartient à l'intervalle [-1,0].

3. On déduit également du tableau que g(x) > 0 sur $]-\infty, \alpha[$ et que g(x) < 0 sur $]\alpha, +\infty[$.

Partie B

Soit f la fonction définie et dérivable sur \mathbb{R} telle que, pour tout réel x,

$$f(x) = (1 + x + x^2 + x^3)e^{-2x+1}$$
.

1. On calcule $\lim_{x \to -\infty} f(x) = -\infty$.

$$\lim_{x \to -\infty} (1 + x + x^2 + x^3) = \lim_{x \to -\infty} x^3 = -\infty$$

$$\lim_{x \to -\infty} (-2x + 1) = +\infty$$
On pose $X = -2x + 1$

$$\lim_{x \to +\infty} e^{X} = +\infty$$

$$\lim_{x \to +\infty} (1 + x + x^2 + x^3) e^{-2x + 1} = -\infty. \text{ Donc } \lim_{x \to -\infty} f(x) = -\infty.$$

2. a. On multiplie l'inégalité x > 1 par x (strictement positif) : $x^2 > x$. On multiplie cette dernière inégalité par x et on obtient $x^3 > x^2$.

Pour
$$x > 1$$
, on a donc : $1 < x < x^2 < x^3$.

- **b.** Pour x > 1, on a $1 < x < x^2 < x^3$ donc $0 < 1 + x + x^2 + x^3 < 4x^3$. Comme pour tout x, $e^{-2x+1} > 0$, l'inégalité $0 < 1 + x + x^2 + x^3 < 4x^3$ entraîne $0 < (1 + x + x^2 + x^3)$ $e^{-2x+1} < 4x^3$ e^{-2x+1} ou autrement dit : $0 < f(x) < 4x^3$ e^{-2x+1}
- **c.** On admet que, pour tout entier naturel n, $\lim_{x \to +\infty} x^n e^{-x} = 0$.

$$\begin{cases}
e^{-2x+1} = e^{-2x} \times e^{1} = e e^{-2x} \\
4x^{3} = \frac{8x^{3}}{2} = \frac{1}{2}(2x)^{3}
\end{cases} \implies 4x^{3} e^{-2x+1} = \frac{e}{2}(2x)^{3} e^{-2x}$$

$$\lim_{\substack{x \to +\infty \\ X \to +\infty}} 2x = +\infty$$
On pose $X = 2x$

$$\lim_{\substack{x \to +\infty \\ X \to +\infty}} X^{3} e^{-X} = 0
\end{cases} \implies \lim_{\substack{x \to +\infty \\ X \to +\infty}} (2x)^{3} e^{-2x} = 0 \iff \lim_{\substack{x \to +\infty \\ X \to +\infty}} 4x^{3} e^{-2x+1} = 0$$

d. On note \mathscr{C}_f la courbe représentative de f dans un repère orthonormé $\left(0;\overrightarrow{\iota},\overrightarrow{J}\right)$. D'après la question précédente, si x > 1, alors $0 < f(x) < 4x^3 \, \mathrm{e}^{-2x+1}$. Si x tend vers $+\infty$, on peut supposer que x > 1 donc l'inégalité $0 < f(x) < 4x^3 \, \mathrm{e}^{-2x+1}$ est vérifiée.

On sait que $\lim_{x \to +\infty} 4x^3 e^{-2x+1} = 0$ donc, d'après le théorème des gendarmes, $\lim_{x \to +\infty} f(x) = 0$.

On en déduit que la courbe \mathscr{C}_f admet l'axe des abscisses comme asymptote horizontale en $+\infty$.

3. La fonction f est dérivable sur \mathbb{R} et

$$f'(x) = (1 + 2x + 3x^{2}) e^{-2x+1} + (1 + x + x^{2} + x^{3}) (-2) e^{-2x+1}$$

$$= (1 + 2x + 3x^{2} - 2 - 2x - 2x^{2} - 2x^{3}) e^{-2x+1} = (-2x^{3} + x^{2} - 1) e^{-2x+1} = g(x) e^{-2x+1}$$

4. Pour tout x, $e^{-2x+1} > 0$ donc f'(x) est du signe de g(x).

Donc: sur] $-\infty$, α [, f'(x) > 0 donc f est strictement croissante sur] $-\infty$, α]; sur] α , $+\infty$ [, f'(x) < 0 donc f est strictement décroissante sur [α , $+\infty$ [.