∽ Corrigé du baccalauréat S Liban 29 mai 2018 ∾

EXERCICE 1 3 points
Commun à tous les candidats

1.

Solution : L'espérance d'une variable aléatoire suivant une loi exponentielle de paramètre λ est $\frac{1}{\lambda}$

ici, le temps d'attente moyen est donc de $\frac{1}{0.02}$ = 50 secondes

il faut ajouter le temps moyen d'échange de 96 secondes

Finalement le temps moyen d'un appel est de 146 secondes soit 2 minutes et 26 secondes

2. a.

Solution: On cherche $P(X \ge 120)$

$$P(X \ge 120) = 1 - P(X < 120) = 1 - \int_0^{120} 0.02e^{-0.02t} dt$$
$$= 1 - \left[-e^{-0.02t} \right]_0^{120} = e^{-2.4} \approx 0.091$$

b.

Solution : On cherche $P(Y \leq 90)$

 $P(Y \leq 90) \approx 0.409$

3.

Solution : On cherche à comparer $P(X \le 30)$ et $P_{X \ge 60}$ ($X \le 60 + 30$)

X suit une loi exponentielle qui est une loi de durée de vie sans vieillissement donc on sait que pour tous les réels t et h strictement positifs, on a :

$$p_{X \ge t}(X \ge t + h) = p(X \ge h) \text{ donc } (1 - p_{X \ge t}(X \le t + h)) = (1 - p(X \le h))$$

d'où $p_{X \ge t}(X \le t + h) = p(X \le h)$ avec $t = 60$ et $h = 30$ on a alors $P_{X \ge 60}(X \le 60)$

d'où $p_{X\geqslant t}$ $(X\leqslant t+h)=p(X\leqslant h)$ avec t=60 et h=30 on a alors $P_{X\geqslant 60}(X\leqslant 60+30)=P(X\leqslant 30)$

Autrement dit, le fait de raccrocher n'a rien changé à son attente totale.

EXERCICE 2 3 points

Commun à tous les candidats

1.

Solution:
$$1 + i = \sqrt{2} \left(\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right) = \sqrt{2} e^{i \frac{\pi}{4}}$$
 et $1 - i = \overline{(1+i)} = \sqrt{2} e^{-i \frac{\pi}{4}}$

2. a.

Solution : Posons
$$Z = (1+i)^n$$
 alors $\overline{Z} = \overline{(1+i)^n} = \left(\overline{1+i}\right)^n = (1-i)^n$ donc $\forall n \in \mathbb{N}$, $S_n = Z + \overline{Z} = 2Re(Z)$ $\forall n \in \mathbb{N}$, $Z = \left(\sqrt{2}e^{i\frac{\pi}{4}}\right)^n = \left(\sqrt{2}\right)^n \left(e^{i\frac{n\pi}{4}}\right) = \sqrt{2^n} \left(\cos\left(\frac{n\pi}{4}\right) + i\sin\left(\frac{n\pi}{4}\right)\right)$ donc $\forall n \in \mathbb{N}$, $S_n = 2\sqrt{2^n}\cos\left(\frac{n\pi}{4}\right)$

Il faut donc étudier le signe de $\cos(n\frac{\pi}{4})$:

- Si $n = 8k, k \in \mathbb{N}$, $\cos\left(n\frac{\pi}{4}\right) = \cos\left(8k\frac{\pi}{4}\right) = \cos 2k\pi = 1$. On a donc $S_{8k} = 2\left(\sqrt{2}\right)^{8k}\cos\left(8k\frac{\pi}{4}\right) = 2 \times 2^{4k} = 2^{4k+1} = 2^{4k+1}$
- Si n = 8k + 1, $k \in \mathbb{N}$, $\cos\left(n\frac{\pi}{4}\right) = \cos\left((8k + 1)\frac{\pi}{4}\right) = \cos\left(2k\pi + \frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$.

 On a donc $S_{8k+1} = 2\left(\sqrt{2}\right)^{8k+1}\cos\left((8k + 1)\frac{\pi}{4}\right) = 2 \times 2^{4k} \times \sqrt{2} \times \frac{\sqrt{2}}{2} = 2^{4k+1} = 2^{4k+1}(\cos 0 + i\sin 0)$.
- Si $n = 8k + 2, k \in \mathbb{N}$, $\cos\left(n\frac{\pi}{4}\right) = \cos\left((8k + 2)\frac{\pi}{4}\right) = \cos\left(2k\pi + \frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2}\right) = 0$. $S_{8k+2} = 0$: il n'a pas d'écriture trigonométrique.
- Si n = 8k + 3, $k \in \mathbb{N}$, $\cos\left(n\frac{\pi}{4}\right) = \cos\left((8k + 3)\frac{\pi}{4}\right) = \cos\left(2k\pi + \frac{3\pi}{4}\right) = \cos\left(\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2}$. $S_{8k+3} = 2\left(\sqrt{2}\right)^{8k+3}\cos\left((8k + 3)\frac{\pi}{4}\right) = 2 \times 2^{4k+1} \times \sqrt{2} \times \left(-\frac{\sqrt{2}}{2}\right) = -2^{4k+2}$. $S_{8k+3} = 2^{4k+2}(\cos\pi + i\sin\pi)$.
- Si n = 8k + 4, $k \in \mathbb{N}$, $\cos\left(n\frac{\pi}{4}\right) = \cos\left((8k + 4)\frac{\pi}{4}\right) = \cos\left(2k\pi + \pi\right) = \cos(\pi) = \cos\pi = -1$. $S_{8k+4} = 2\left(\sqrt{2}\right)^{8k+4}\cos\left((8k + 4)\frac{\pi}{4}\right) = 2^{4k+3} \times -1$. $S_{8k+4} = 2^{4k+3}(\cos\pi + i\sin\pi)$.
- Si n = 8k + 5, $k \in \mathbb{N}$, $\cos\left(n\frac{\pi}{4}\right) = \cos\left((8k + 5)\frac{\pi}{4}\right) = \cos\left(2k\pi + \frac{5\pi}{4}\right) = \cos\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2}$. $S_{8k+5} = 2\left(\sqrt{2}\right)^{8k+5}\cos\left((8k + 5)\frac{\pi}{4}\right) = 2 \times 2^{4k+2} \times \sqrt{2} \times \left(-\frac{\sqrt{2}}{2}\right) = -2^{4k+3}$. $S_{8k+5} = 2^{4k+3}\cos\pi + i\sin\pi$.
- Si n = 8k + 6, $k \in \mathbb{N}$, $\cos\left(n\frac{\pi}{4}\right) = \cos\left((8k + 6)\frac{\pi}{4}\right) = \cos\left(2k\pi + \frac{6\pi}{4}\right) = \cos\left(\frac{6\pi}{4}\right) = \cos\left(\frac{3\pi}{2}\right) = 0$. $S_{8k+6} = 0$: il n'a pas d'écriture trigonométrique.

• Si
$$n = 8k + 7$$
, $k \in \mathbb{N}$,
 $\cos\left(n\frac{\pi}{4}\right) = \cos\left((8k + 7)\frac{\pi}{4}\right) = \cos\left(2k\pi + \frac{7\pi}{4}\right) = \cos\left(\frac{7\pi}{4}\right) = \frac{\sqrt{2}}{2}$.
 $S_{8k+7} = 2\left(\sqrt{2}\right)^{8k+7}\cos\left((8k + 7)\frac{\pi}{4}\right) = 2 \times 2^{4k+3} \times \sqrt{2} \times \left(\frac{\sqrt{2}}{2}\right) = 2^{4k+4}$.
 $S_{8k+7} = 2^{4k+4}(\cos 0 + i \sin 0)$.

b.

Solution:

Affirmation A : Vraie car $\forall n \in \mathbb{N}$, $S_n = 2\text{Re}(Z) \in \mathbb{R}$

Affirmation B: Vraie car pour tout entier naturel k,

$$n = 4k + 2 \Longrightarrow \cos\left(\frac{n\pi}{4}\right) = \cos\left(k\pi + \frac{\pi}{2}\right) = 0$$

EXERCICE 3 4 points

Commun à tous les candidats

1. a.

Solution: pour t = 0 on a $S_1(0)(140; 105; -170)$

b.

Solution : On sait que les sous-marins se déplacent à vitesse constante. Le premier sous-marin a parcouru la distance AB avec $A=S_1(0)$ et $B=S_1(1)$ en une minute.

$$A(140; 105; -170)$$
 et $B(80; 15; -200)$
donc $AB = \sqrt{60^2 + 90^2 + 30^2} = \sqrt{12600} = 30\sqrt{14}$

la vitesse du premier sous-marin est donc de $30\sqrt{14}$ mètres par minutes soit $1,8\sqrt{14}\approx 6,73$ km.h $^{-1}$

2.

Solution : On considère les points A et B définis précédemment Soit C le point de l'espace à la verticale de B et ayant la même profondeur que A

alors (ABC) est le plan vertical contenant la trajectoire du premier sous-marin. Appelons B le point atteint par le sous-marin au bout d'une minute : B(80; 15; -200). D'après la définition de la vitesse, celle-ci $30\sqrt{14}$ est égale à la distance AB. C a la même abscisse et la même ordonnée que B, mais la cote de A : C(80; 15; -170).

On a donc dans le triangle rectangle ABC : $\sin \widehat{BAC} = \frac{BC}{AB} = \frac{30}{30\sqrt{14}} = \frac{1}{\sqrt{14}}$.

La calculatrice donne au dixième près : $\alpha \approx 15,5$ degres.

3.

Solution : Soit $z_2(t)$ la profondeur du second sous-marin en fonction du temps et v_2 sa vitesse verticale constante (en mètres par minute) alors, par définition on a $z_2(t) = z_2(0) + v_2 t$.

Or $z_2(0) = -68 \text{ car } S_2(0) \text{ est de coordonnées (68 ; 135 ; -68).}$

$$v_2 = \frac{-248 - (-68)}{3} = -60$$
 car après 3 minutes, le sous-marin est à une profondeur de -248 m.

On en déduit $z_2(t) = -68 - 60 t$.

Avec les mêmes notations on a, pour le premier sous-marin, $z_1(t) = 170 - 30t$

$$z_1(t) = z_2(t) \iff -170 - 30t = -68 - 60t \iff t = \frac{102}{30} = 3.4$$

Donc les deux sous-marins sont à la même profondeur après 3 min 24 s.

EXERCICE 4 5 points

Commun à tous les candidats

1.

Solution : f_n est un quotient de deux fonctions dérivables sur [1 ; 5] dont le dénominateur ne s'annule pas donc f_n est dérivable sur [1 ; 5]

$$f_n = \frac{u}{v} \Longrightarrow f'_n = \frac{u'v - uv'}{v^2} \text{ avec } \begin{cases} u(x) = \ln(x) \\ v(x) = x^n \end{cases} \Longrightarrow \begin{cases} u'(x) = \frac{1}{x} \\ v'(x) = nx^{n-1} \end{cases}$$
$$\text{donc } \forall x \in [1; 5], f'_n(x) = \frac{x^{n-1} - nx^{n-1} \ln(x)}{x^{2n}} = \frac{x^{n-1} (1 - n \ln(x))}{x^{2n}} = \frac{1 - n \ln(x)}{x^{n-1}}$$

2.

Solution: $f'_n(x) = 0 \iff \ln(x) = \frac{1}{n} \iff x = e^{\frac{1}{n}} \text{ et } f_n\left(e^{\frac{1}{n}}\right) = \frac{\ln\left(e^{\frac{1}{n}}\right)}{e^1} = \frac{1}{e}\ln\left(e^{\frac{1}{n}}\right) A_n$ est donc de coordonnées $\left(e^{\frac{1}{n}}; \frac{1}{e}\ln\left(e^{\frac{1}{n}}\right)\right)$.

Donc tous les points A_n appartiennent à une même courbe Γ d'équation

$$y = \frac{1}{e} \ln(x).$$

3. a.

Solution:

 $1 \le x \le 5 \Longrightarrow 0 \le \ln(x) \le \ln(5)$ car $x \longmapsto \ln(x)$ est croissante sur [1; 5] en divisant membre à membre par $x^n > 0$, on obtient bien pour tout entier n > 1 et tout réel x de l'intervalle [1; 5] :

$$0 \leqslant \frac{\ln(x)}{x^n} \leqslant \frac{\ln(5)}{x^n}.$$

b.

Solution:

Pour tout entier
$$n > 1$$
, $\int_{1}^{5} \frac{1}{x^{n}} dx = \int_{1}^{5} x^{-n} dx$
$$= \frac{1}{-n+1} \left[x^{-n+1} \right]_{1}^{5}$$
$$= \frac{1}{-n+1} \left(5^{-n+1} - 1 \right)$$
$$= \frac{1}{n-1} \left(1 - \frac{1}{5^{n-1}} \right)$$

c.

Solution:

 $f_n(x) \ge 0$ sur [1; 5] donc l'aire cherchée est donnée par $\int_1^5 f_n(x) dx$ on sait que pour tout entier n > 1 et tout réel x de l'intervalle [1; 5] :

$$0 \leqslant \frac{\ln(x)}{x^n} \leqslant \frac{\ln(5)}{x^n}.$$

or l'intégrale conserve l'ordre donc $0 \le \int_{1}^{5} f_{n}(x) dx \le \int_{1}^{5} \frac{\ln(5)}{x^{n}} dx$ $\int_{1}^{5} \frac{\ln(5)}{x^{n}} dx = \ln(5) \int_{1}^{5} \frac{1}{x^{n}} dx = \frac{\ln(5)}{n-1} \left(1 - \frac{1}{5^{n-1}}\right)$

 $\lim_{n \to +\infty} 5^{n-1} = +\infty \text{ car } 5 > 1 \text{ et } \lim_{n \to +\infty} \frac{\ln(5)}{n-1} = 0 \text{ donc par opération sur les limites}$ on a $\lim_{n \to +\infty} \int_{1}^{5} \frac{\ln(5)}{x^{n}} dx = 0$

D'après le théorème des gendarmes on en déduit que $\lim_{n\to+\infty}\int_1^5 f_n(x) \, \mathrm{d}x = 0$ la limite de l'aire est donc de 0 quand n tend vers $+\infty$

EXERCICE 5 5 points Candidats n'ayant pas suivi l'enseignement de spécialité

1.

Solution : l'énoncé donne
$$p_{G_n}(G_{n+1}) = \frac{1}{4}$$
 et $p_{\overline{G_n}}(\overline{G_{n+1}}) = \frac{1}{2}$ donc $p_{\overline{G_n}}(G_{n+1}) = \frac{1}{2}$ $p_2 = p(G_2) = p(G_2 \cap G_1) + p\left(G_2 \cap \overline{G_1}\right)$ d'après les probabilités totales $p_{G_1}(G_2) \times p(G_1) + p_{\overline{G_1}}(G_2) \times p\left(\overline{G_1}\right) = \frac{1}{4}p_1 + \frac{1}{2}\left(1 - p_1\right) = \frac{1}{16} + \frac{3}{8} = \frac{7}{16}$

2.

Solution :
$$G_n$$
 et $\overline{G_n}$ forment une partition de l'univers donc
$$p_{n+1} = p\left(G_{n+1}\right) = p\left(G_{n+1} \cap G_n\right) + P\left(G_{n+1} \cap \overline{G_n}\right)$$
 d'après les probabilités totales
$$= P_{G_n}\left(G_{n+1}\right) \times P\left(G_n\right) + P_{\overline{G_n}}\left(G_{n+1}\right) \times P\left(\overline{G_n}\right)$$

$$= \frac{1}{4}p_n + \frac{1}{2}\left(1 - p_n\right)$$

$$= -\frac{1}{4}p_n + \frac{1}{2}$$

3.

Solution : Il semblerait que (p_n) converge vers 0,4

4. a.

Solution:

$$\forall n \in \mathbb{N}^*, u_{n+1} = p_{n+1} - \frac{2}{5}$$

$$= -\frac{1}{4}p_n + \frac{1}{2} - \frac{2}{5} = -\frac{1}{4}p_n + \frac{1}{10}$$

$$=-\frac{1}{4}\left(p_n-\frac{2}{5}\right)=-\frac{1}{4}u_n$$

On en déduit que (u_n) est géométrique de raison $q = -\frac{1}{4}$ et de premier terme $u_1 = p_1 - \frac{2}{5} = -\frac{3}{20}$

b.

Solution:
$$\forall n \in \mathbb{N}^*$$
, $u_n = u_1 \times q^{n-1} = -\frac{3}{20} \times \left(-\frac{1}{4}\right)^{n-1}$.
Or $u_n = p_n - \frac{2}{5}$ donc on a bien $\forall n \in \mathbb{N}^*$, $p_n = \frac{2}{5} - \frac{3}{20} \times \left(-\frac{1}{4}\right)^{n-1}$.

c.

Solution :
$$-1 < \left| -\frac{1}{4} \right| < 1$$
 donc $\lim_{n \to +\infty} \left(-\frac{1}{4} \right)^{n-1} = 0$ et par opération sur les limites,

$$\lim_{n\to+\infty}p_n=\frac{2}{5}.$$

 $\lim_{n\to+\infty}p_n=\frac{2}{5}.$ On en déduit qu'après un grand nombre de parties, la probabilité de gagner se stabilise aux alentours de $\frac{2}{5}$

EXERCICE 5 5 points Candidats ayant suivi l'enseignement de spécialité

1.

Solution:

$$\begin{array}{c|cccc}
1 & A \leftarrow 0 \\
2 & B \leftarrow 1 \\
3 & \text{Pour } i \text{ allant de 1 à } n : \\
4 & C \leftarrow A + B \\
5 & A \leftarrow B \\
6 & B \leftarrow C \\
7 & \text{Fin Pour}
\end{array}$$

2.

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
 donc $A^2 = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$, $A^3 = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}$, $A^4 = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}$ et $A^5 = \begin{pmatrix} 8 & 5 \\ 5 & 3 \end{pmatrix}$

3. a.

Solution :
$$A^p = \begin{pmatrix} a_{p+1} & a_p \\ a_p & a_{p-1} \end{pmatrix}$$
 et $A^q = \begin{pmatrix} a_{q+1} & a_q \\ a_q & a_{q-1} \end{pmatrix}$ $A^p \times A^q = A^{p+q} = \begin{pmatrix} a_{p+q+1} & a_{p+q} \\ a_{p+q} & a_{p+q-1} \end{pmatrix}$

On en déduit, en calculant le terme de A^{p+q} situé sur la seconde ligne et première colonne que pour tous entiers naturels non nuls p et q,

$$a_{p+q} = a_p \times a_{q+1} + a_{p-1} \times a_q$$

b.

Solution : si r divise a_p et a_q alors il existes deux entiers k et k' tels que $a_p = rk$ et $a_q = rk'$.

On a alors $a_{p+q} = rk \times a_{q+1} + a_{p-1} \times rk' = r(k \times a_{q+1} + a_{p-1} \times k')$.

Or
$$(k \times a_{q+1} + a_{p-1} \times k') \in \mathbb{Z}$$
.

Donc on en déduit que si un entier r divise les entiers a_p et a_q , alors r divise également a_{p+q}

c.

Solution:

Initialisation: pour n = 1 a_p divise évidemment $a_{1\times p}$

Hérédité: Soit n un entier naturel non nul tel que a_p divise a_{np} donc il existe un entier k tel que $a_{np} = k \times a_p$ alors

 $a_{(n+1)p} = a_{np+p} = a_{np} \times a_{p+1} + a_{np-1} \times a_p$ $= a_p \times \left(k \times a_{p+1} + a_{np-1}\right) \text{ d'après l'hypothèse de récurrence.}$

 $\operatorname{Or}\left(k\times a_{p+1}+a_{np-1}\right)\in\mathbb{Z}$

On en déduit que a_p divise $a_{(n+1)p}$

La propriété est donc héréditaire à partir du rang n=1 or elle est vérifiée à ce rang 1 donc par le principe de récurrence on vient de montrer que pour tous entiers naturels non nuls n et p, a_p divise a_{np} .

4. a.

Solution:

Si $n \ge 5$ n'est pas premier alors il existe deux entiers naturels

 $m \geqslant 3$ et $p \geqslant 2$ tels que n = mp alors $a_n = a_{mp}$ est divisible par a_m d'après la question précédente.

Or pour tout entier $m \ge 3$, $a_m > 1$ donc a_n n'est pas premier car divisible par a_m qui est un entier supérieur strictement à 1

Finalement si $n \ge 5$ n'est pas premier alors a_n n'est pas premier.

b.

Solution : 4181 n'est pas un nombre premier mais 19 est premier donc si a_n n'est pas premier, n peut l'être.

On peut conclure que la réciproque de la propriété précédente est fausse.