ÉLÉMENTS DE LOGIQUE

I) Proposition

a) **Définition**: Une <u>proposition</u> est un énoncé ayant un sens et susceptible d'être <u>vrai</u> ou <u>faux</u> sans ambiguïté.

b) Exemples:

• « 3 < 2 » : Faux

• $\ll 4 \ge 4 \gg$: Vrai

• « 3 divise 12 » : Vrai

• « 91 est un nombre premier » : Faux $(91 = 7 \times 13)$

II) Forme propositionnelle

a) **Définition**: Une <u>forme propositionnelle</u> est un énoncé contenant une (des) variable(s), vrai pour certaines valeurs de la (les) variable(s) et faux pour les autres.

b) Exemples:

- La phrase « $3x + 6 \ge 0$ » est vraie pour tous les réels supérieurs ou égaux à -2, et fausse pour les autres.
- Soit n un entier. On note P_n la <u>forme propositionnelle</u> (**f.p.** en abrégé) « n est un multiple de 3 ».
 Par exemple, P₁₈ est vraie et P₅ est fausse.
 On dit que 18 <u>vérifie</u> P et que 5 ne la vérifie pas.

E1 : Soit la f.p. définie sur les réels par P_x : « |x| = x »

Proposer une valeur de *x* qui vérifie *P*, et une qui ne la vérifie pas.

c) Remarques:

 Si on note P_x une f.p. dépendant de la variable x, et si a est une valeur donnée de x, alors P_a est une proposition et P s'appelle une <u>propriété</u>.

E2: Indiquer les propriétés utilisées à l'exercice E1.

- Une proposition est donc une forme propositionnelle :

 soit toujours vraie (c'est alors une <u>tautologie</u>),
 - soit toujours fausse (c'est alors une *antilogie*).
- Une proposition à qui, par convention, on attribue la valeur « *vrai* » s'appelle un *axiome*.
- Les définitions et propriétés qui suivent s'appliquent de la même façon aux propositions et aux f.p.

III) Négation d'une proposition P

Définition: la <u>négation</u> de <u>P</u>, notée non P ou encore \overline{P} , est vraie lorsque P est fausse, et non P est fausse lorsque P est vraie.

E3: Préciser les négations des f.p. suivantes:

Dans IR, $\ll 3x + 6 \ge 0$ »	
Dans IN, « n est pair »	

IV) Proposition définie sur un ensemble E

• Soit *n* un entier positif. On note *P_n* la forme propositionnelle « *n* divise 12 ». On note *F* l'ensemble des entiers vérifiant *P_n*. On a donc :

$$F = \{ n \in \mathbb{N}, P_n \} = \{ 1; 2; 3; 4; 6; 12 \}$$

{ $n \in \mathbb{N}, P_n$ } définit F en <u>compréhension</u>. { 1; 2; 3; 4; 6; 12 } définit F en <u>extension</u>.

- On peut définir un sous-ensemble F d'un ensemble E par la donnée d'une proposition P, vraie uniquement pour les éléments de F. On dit que P <u>caractérise</u> le sous-ensemble F.
- Par exemple, l'équation 3x + 2y = 5 caractérise les points d'une droite, dont les coordonnées vérifient cette équation et qui sont les seules à la vérifier.
- Inversement, à tout sous-ensemble F d'un ensemble E donné en extension, on peut associer la f.p.
 « x appartient à F », et on note « x ∈ F ».

On a donc : $F = \{ x \in E, P_x \}$.

E4 : Préciser l'ensemble F caractérisé par la f.p. de **E1**

• Si on note A l'ensemble $\{x, x \in E, P_x\}$, alors l'ensemble $\{x, x \in E, non P_x\}$ est le <u>complémentaire</u> de A dans E et se note C_EA ou encore \overline{A} , s'il n'y a pas d'ambiguïté sur l'ensemble E.

V) Table de vérité

a) **Définition**: tableau permettant de visualiser les <u>valeurs de vérité</u> (<u>Vrai</u> ou <u>Faux</u>) de plusieurs propositions. On dira que deux propositions sont <u>synonymes</u> ou <u>logiquement équivalentes</u> lorsqu'elles ont même table de vérité. On notera $P \equiv Q$.

b) P1: Exemple:

P et non(non P) sont synonymes:

P	non P	non(non P)
V	F	V
F	V	F

On peut aussi utiliser la notation (qui a l'avantage de ne pas dépendre d'une langue et d'être ainsi internationale) : 1 pour *Vrai* et 0 pour *Faux*.

VI) Connecteurs

a) Définitions: À partir de propositions, le langage usuel construit d'autres propositions plus complexes; pour cela, il utilise des *connecteurs*.

Intitulé	Nom	Symbole	Ensembles
Disjonction inclusive	« ou »	$P \lor Q$	$\frac{\text{R\'eunion}}{A \cup B}$
Disjonction exclusive	« ou bien » ou encore « soit, soit»	$P \le Q$	$\frac{\text{Différence}}{\text{symétrique}}$ $A \Delta B =$ $A \cup B - A \cap B$
Conjonction	« et »	$P \wedge Q$	$\frac{\text{Intersection}}{A \cap B}$
Implication	« implique » ou encore « si, alors »	$P \Rightarrow Q$ $\overline{P} \vee Q$	$\overline{A} \cup B$, où \overline{A} est le complémentaire de A dans E
Équivalence	« si et seulement si »	$P \Leftrightarrow Q$	Complémentaire de $A \Delta B$

b) Tables de vérité :

P	Q	$P \vee Q$	$P \le Q$	$P \wedge Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
V	V	V	F	V	V	V
V	F	V	V	F	F	F
F	V	V	V	F	V	F
F	F	F	F	F	V	V

E5 : Soit P et Q deux propositions. Dresser la table de vérité de la proposition $(P \lor Q) \Longrightarrow (P \land Q)$

P	Q	$P \lor Q$	$P \wedge Q$	$(P \lor Q) \Rightarrow (P \land Q)$
V	V			
V	F			
F	V			
F	F			

c) Emploi des connecteurs dans le langage courant :

- Le mot « ou » n'a pas le même sens dans les deux phrases suivantes :
 - « qu'il pleuve **ou** qu'il vente, ne sortez pas! »
 - « je partirai lundi **ou** mardi »
- Le premier « ou » est <u>inclusif</u> et le deuxième <u>exclusif</u>, car lundi et mardi sont incompatibles (P et Q sont dits <u>incompatibles</u> lorsque P ∧ Q est une antilogie). Le langage courant est parfois imprécis quant à la différence d'utilisation de ces deux « ou ».
- De même, la conjonction « *et* » a parfois un autre sens que celui du connecteur :
 - « et » a le sens de « puis » dans « je jouerai au volley et je me baignerai »
 - « et » a le sens de « donc » dans « il a mangé trop de chocolat et il a eu une crise de foie »
 - « et » a bien le sens de « et » dans « pour entrer ici, il faut être majeur et membre du club »
 - « et » a le sens de « ou » dans « peuvent entrer ici les personnes majeures et les membres du club »
- Quant à l'implication, symbolisée par l'expression « si..., alors... », elle est source de nombreuses erreurs : si l'on comprend facilement que P ∨ Q et P ∧ Q sont des propositions créées à partir d'autres, l'implication est souvent comprise et utilisée (à tort) comme un rapport de cause à effet.
- Cela peut venir du verbe « *implique* » qui, contrairement aux conjonctions « *et* » et « *ou* », semble indiquer une conséquence.
- L'expression « P implique Q » fait référence à trois valeurs de vérité : celles de P, celle de Q et celle de P ⇒ Q. Lorsque l'on fait une erreur, c'est le plus souvent qu'on sous-entend que P est vraie alors que justement, si P est fausse, l'implication est vraie.
- Le fait que « $P \Rightarrow Q$ » soit synonyme de « $(non\ P) \lor Q$ » montre bien qu'il s'agit d'un connecteur comme les autres. On le voit bien dans les phrases suivantes : « Si tu bouges, alors je tire! » est bien synonyme de « Ne bouge pas, ou je tire! ».

d) Propriétés de « ou » et de « et » :

Soit P, Q et R trois propositions quelconques.

- **P2**: $P \lor (non \ P)$ tautologie (*principe du tiers-exclu*)
- **P3**: $P \land (non\ P)$ antilogie (*pr. de non-contradiction*)
- **P4**: $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$ (distributivité)
- **P5**: $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$ (distributivité)

e) P6: Les lois de Morgan :

$$non(P \lor Q) \equiv (non P) \land (non Q)$$
$$non(P \land Q) \equiv (non P) \lor (non Q)$$

E6: Démontrer la loi de Morgan : $(\overline{P} \vee Q) = (\overline{P} \wedge \overline{Q})$

P	Q	$P \vee Q$	$\overline{P \vee Q}$	\overline{P}	\overline{Q}	$\overline{P} \wedge \overline{Q}$
V	V					
V	F					
F	V					
F	F					

• Ces deux lois sont les équivalents ensemblistes de :

Si
$$A$$
 et B sont deux sous-ensembles de E ,
$$C_E(A \cup B) = (C_E A) \cap (C_E B)$$

$$C_E(A \cap B) = (C_E A) \cup (C_E B)$$

- Elles peuvent s'appliquer dans le langage courant :
 - La négation de « j'achèterai des pommes et des poires » est « je n'achèterai pas de pommes ou pas de poires ».
 - La négation de « j'irai à Paris ou à Londres » est « je n'irai pas à Paris et pas à Londres » (cependant on dirait plus correctement « je n'irai ni à Paris ni à Londres »).

f) Propriétés de l'implication et de l'équivalence

- **P7**: $(P \Rightarrow Q) \equiv ((non \ P) \lor Q)$
- **P8**: $(P \Leftrightarrow Q) \equiv ((P \Rightarrow Q) \land (Q \Rightarrow P))$
- $\bullet \quad \mathbf{P9} : (P \Rightarrow Q) \equiv ((nonQ) \Rightarrow (nonP))$
- $((nonQ) \Rightarrow (nonP))$ s'appelle la <u>contraposée</u> de $P \Rightarrow Q$ et lui est synonyme. Elle est parfois utilisée pour des démonstrations.
- En revanche, $Q \Rightarrow P$ est la <u>réciproque</u> de $P \Rightarrow Q$ et ne lui est pas synonyme.
- L'équivalence de deux propositions est très utile dans les démonstrations, en remplaçant une proposition par une proposition équivalente plus facile à démontrer.

E7 : P, Q et R étant trois propositions, montrer, en complétant la table de vérité suivante, que :

$$A: ((P \lor Q) \Longrightarrow R) \equiv ((P \Longrightarrow R) \land (Q \Longrightarrow R)) : B$$

	P	Q	R	$P \vee Q$	A	$P \Rightarrow R$	$Q \Rightarrow R$	В
L								

E8 : Déterminer les ensembles suivants :

$A = \{x \in \mathbf{R}, (x \in \mathbf{N}) \Rightarrow (x > 1)\}$	
$B = \{x \in \mathbf{R}, \ (x \in \mathbf{Z}) \Rightarrow (x \in \mathbf{N})\}$	
$C = \{x \in \mathbf{R}, (x > 1) \Rightarrow (x \in \mathbf{N})\}\$	
$D = \{x \in \mathbf{R}, (x \in \mathbf{N}) \Rightarrow (x \in \mathbf{Z})\}$	

VII) Quantificateurs

a) Le quantificateur universel \forall :

Lorsqu'on veut indiquer qu'un grand nombre d'éléments vérifient une f.p., au lieu d'écrire : « P(a) et P(b) et P(c) et ... », on peut utiliser le *quantificateur universel* « *quel que soit* » (ou « *pour tout* »). En notant E l'ensemble des valeurs vérifiant la f.p., on a : « $\forall x \in E, P(x)$ ».

Le symbole est la lettre *A* à l'envers, première lettre de « *all* » (« *tout* » en anglais).

b) Le quantificateur existentiel \exists :

La négation de la f.p. « $\forall x \in E, P(x)$ » <u>n'est pas</u> « $\forall x \in E, non P(x)$ », car si une propriété n'est pas vérifiée par toutes les valeurs d'un ensemble, c'est qu'*il existe au moins* une de ces valeurs qui ne la vérifie pas. On peut définir le <u>quantificateur</u> <u>existentiel</u> « *il existe au moins* », symbolisé par \exists , qui est un E à l'envers, première lettre de « <u>existe</u> ». Ainsi, on a :

$$(non(\forall x \in E, P(x))) \equiv (\exists x \in E, non P(x))$$

Remarque: Lorsqu'une proposition n'est vérifiée que par un seul élément, on peut utiliser l'expression « *il existe un unique* », symbolisé par ∃!

c) Propriétés :

- **P10**: $\exists x \in E, \ non \ P(x) \equiv \{x, \ x \in E, \ P(x)\} \neq E$
- **P11**: $\exists x \in E, P(x) \equiv \{x, x \in E, P(x)\} \neq \emptyset$
- **P12**: $non(\exists x \in E, P(x)) \equiv \begin{cases} \forall x \in E, non P(x) \\ \{x, x \in E, P(x)\} = \emptyset \end{cases}$

d) Utilisation commune des deux quantificateurs :

• Dans une f.p. utilisant à la fois ∀ et ∃, l'ordre des quantificateurs est très important :

$$(\forall x \in \mathbf{R}, \exists y \in \mathbf{R}, x + y = 0) \text{ est vrai } : y = -x$$

mais $(\exists x \in \mathbf{R}, \forall y \in \mathbf{R}, x + y = 0) \text{ est faux } !$

- En fait, le « ∀ x » avant le « ∃ y » indique que y dépend de x, alors que « ∃ x » avant le « ∀ y » indique que le x sera le même pour tous les y, et donc ne dépend pas d'eux.
- En revanche, deux \forall , ou deux \exists qui se suivent directement peuvent être mis dans un ordre quelconque : $(\forall x \in \mathbf{R}, \forall y \in \mathbf{R}, x^2 + y^2 \ge 0)$ et $(\forall y \in \mathbf{R}, \forall x \in \mathbf{R}, x^2 + y^2 \ge 0)$ sont synonymes et on peut même l'écrire :

$$(\forall (x; y) \in \mathbf{R} \times \mathbf{R}, x^2 + y^2 \ge 0),$$

ou encore $(\forall (x; y) \in \mathbf{R}^2, x^2 + y^2 \ge 0)$

E9: Déterminer, en justifiant, si les affirmations suivantes sont ou non vérifiées :

$\forall x \in \mathbf{R}, \exists e \in \mathbf{R}, ex = 1$	
$\exists e \in \mathbf{R}, \forall x \in \mathbf{R}, x + e = x$	
$\forall x \in \mathbf{R}, \ \exists n \in \mathbf{Z}, \ n \le x < n+1$	
$\forall n \in \mathbf{Z}, \ \exists x \in \mathbf{R}, \ n \le x < n+1$	
$\exists n \in \mathbf{Z}, \forall x \in \mathbf{R}, \ n \le x < n+1$	
$\exists x \in \mathbf{R}, \ \forall n \in \mathbf{Z}, \ n \le x < n+1$	

E10: Montrer que la négation, la conjonction, les deux disjonctions, l'implication et l'équivalence peuvent être exprimées en utilisant uniquement la <u>barre de Sheffer</u> \uparrow , dite NAND, définie par : $P \uparrow Q \equiv \text{non}(P \land Q)$

non P	
$P \lor Q$	
$P \le Q$	
$P \wedge Q$	
$P \Rightarrow Q$	
$P \Leftrightarrow Q$	

E11: a) Montrer que les deux propositions : $(P \Rightarrow Q) \land (Q \Rightarrow R)$ et $P \Rightarrow R$ ne sont pas synonymes.

b) Donner un exemple montrant que les deux propositions ne sont pas synonymes.

	P	Q	R	$P \Rightarrow Q$	$Q \Rightarrow R$	(1)	$P \Rightarrow R$
ŀ							
ŀ							
ŀ							
ļ							
ļ							