PUISSANCES D'UNE MATRICE

(pour information)

1) Introduction

- Soit les deux suites (s_n) et (d_n) vérifiant $s_0 = 1$ et $d_0 = 0$ et, pour tout $n \ge 0$, $\begin{cases} s_{n+1} = 2s_n + 2d_n \\ d_{n+1} = s_n + 3d_n \end{cases}$.
- Ce système est donc équivalent à l'égalité :

$$\begin{pmatrix} s_{n+1} \\ d_{n+1} \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix} \times \begin{pmatrix} s_n \\ d_n \end{pmatrix}$$

- On déterminera s_n et d_n en fonction de n grâce à l'égalité : $\begin{pmatrix} s_n \\ d_n \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}^n \times \begin{pmatrix} s_0 \\ d_0 \end{pmatrix}$
- D'où la recherche de la puissance n-ième de $\begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}$.

2) Valeurs propres – vecteurs propres

- Soit M une matrice carrée d'ordre 2. Soit $\vec{u} \binom{x}{y}$ un vecteur <u>non nul</u>.
- On dit que \vec{u} est un <u>vecteur propre</u> de M s'il existe un réel λ tel que $M \times \vec{u} = \lambda \vec{u}$.
- λ est alors appelée la <u>valeur propre</u> associée à \vec{u} .
- On va calculer les valeurs de \vec{u} et de λ dans le cas de la matrice $M = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}$. L'égalité $M \times \vec{u} = \lambda \vec{u}$ peut s'écrire aussi : $M \times \vec{u} - \lambda I \times \vec{u} = \vec{0}$, c'est-à-dire $(M - \lambda I) \times \vec{u} = \vec{0}$.

E1: Montrer qu'alors $det(M - \lambda I) = 0$

(On pourra faire une démonstration par l'absurde)

- **E2 :** Former le déterminant de $M \lambda I$ et résoudre l'équation en λ ainsi obtenue.
- E3: Montrer que l'on peut trouver une relation de récurrence entre trois termes consécutifs de la suite (s_n) . Comparer cette relation avec l'équation du second degré en λ précédemment.
- On trouve donc deux valeurs propres différentes, qui sont $\lambda_1 = 1$ et $\lambda_2 = 4$. Pour chacune de ces valeurs, on va chercher <u>un</u> vecteur propre (non unique) $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$.
- Pour $\lambda_1 = 1$, $(M \lambda I) \times \vec{u} = \vec{0}$ s'écrit : $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \times \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \text{ c'est-à-dire } \begin{cases} x + 2y = 0 \\ x + 2y = 0 \end{cases}.$ Il est normal d'obtenir deux équations proportionnelles, puisque le déterminant est nul.

Tous les vecteurs propres correspondant à cette valeur propre vérifient donc x + 2y = 0, par exemple $\vec{u} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$.

E4: Déterminer un vecteur propre parmi les plus « simples » pour la valeur propre $\lambda_2 = 4$.

3) Décomposition d'une matrice

- Ayons alors l'idée de former deux matrices :
 - La matrice dite <u>diagonale</u> constituée, sur la <u>première diagonale</u>, des deux valeurs propres, et de zéros ailleurs : $D = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$.
 - La matrice constituée, dans l'ordre des valeurs propres, des vecteurs propres trouvées (notées en verticale comme tout vecteur) : $V = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$.

E5: Déterminer la matrice inverse de V:

E6: Montrer que $M = V \times D \times V^{-1}$

4) Puissance n-ième d'une matrice

L'intérêt de cette décomposition, compliquée à première vue, est que le calcul de M^n va être remplacée par celui de D^n , qui est très simple.

E7: Montrer que $M^n = V \times D^n \times V^{-1}$

(On pourra faire une démonstration par récurrence)

E8: Calculer D^n .

E9: Calculer M^n

E10 : Comme $\begin{pmatrix} s_n \\ d_n \end{pmatrix} = M^n \times \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, déterminer la formule générale donnant s_n et d_n .

E11 : Utiliser les méthodes précédentes pour déterminer, en fonction de l'entier positif n, la puissance n-ième de la matrice $M = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$.

E12 : Chercher à utiliser les méthodes précédentes pour déterminer le terme général de la suite, dite de Fibonacci :

$$u_0 = 1$$
, $u_1 = 1$ et,

pour tout entier n positif ou nul, $u_{n+2} = u_{n+1} + u_n$.